Iberoamerican Journal of Medicine
Iberoamerican Journal of Medicine

Factors affecting SARS-CoV-2 (COVID-19) Pandemic, including Zoonotic, Human Transmission and Chain of Infection. Reducing Public health Risk by Serum Antibody Testing, Avoiding Screening in Unhygienic Places and False PCR Reporting. A Scientific Review

Kamran Mahmood Ahmed Aziz, Abdullah Othman, Waleed Abdullah Alqahtani, Sumaiya Azhar

Downloads: 2
Views: 758


During December 2019, a rapid increase in the number of SARS-CoV-2 (COVID-19) cases was reported worldwide. We investigated several factors for rapid increase in SARS-COV-2. Genomic sequence reveals that domestic and wild animals were likely ancestors and zoonotic source for SARS-CoVs, MERS-CoVs, and SARS-CoV-2; these viruses replicated in animals and humans during past several decades, exhibiting diverse mutations and self-limiting diseases except during outbreaks. SARS-CoV-2 has been retrospectively isolated in different studies in August 2019, several months before Wuhan reported. Hence, there is a possibility that viruses went undetected and infecting sub-clinically, in past several years, and SARS-CoV-2 antigens and neutralizing antibodies may have been present in humans since years. All SARS-CoVs are basically respiratory viruses, spread by droplets, hence droplet precautions are essential. Furthermore, silent phase of transmission (asymptomatic/subclinical) can be beneficial for humans. Lack of symptoms eventually lessen virus transmission and reduce the pathogen's long-term survival and provide strong humoral herd immunity (with sropositivity and diverse antibodies) up to several years and during epidemics. RT-PCR has low sensitivity and specificity, carries a high risk of handling live virus antigens, and requires difficult protocols. As viral load also sharply declines after few days of onset of infection, this technique might overlook infection. Furthermore, SARS-CoV-2 infection may be present in blood when oropharyngeal swabs are negative by RT-PCR. Conversely, antibodies against SARS-CoVs develop robustly in by reduced amount of antigens and ELISA for diagnosing antibodies demonstrates 100% specificity and 100% sensitivity, even in clinically asymptomatic individuals. These antibodies can be used for serologic surveys, monitoring and screening. Furthermore, screening tests for SARS-COV-2 should be avoided in unhygienic public places by nasopharyngeal swabs, which carry a high risk of further transmission, co-infection or super-infection. If above mentioned factors and Infection control policy is followed, SARS-CoV-2 pandemic can be controlled effectively.


SARS-CoV-2; RT-PCR; Antibody; Zoonotic; Animal transmission; Genomics; Asymptomatic fraction; Herd immunity


1. Ambali AG, Jones RC. Early pathogenesis in chicks of infection with an enterotropic strain of infectious bronchitis virus. Avian Dis. 1990;34(4):809-17.
2. Cavanagh D. Coronaviruses in poultry and other birds. Avian Pathol. 2005;34(6):439-48. doi: 10.1080/03079450500367682.
3. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020;368(6494):1016-20. doi: 10.1126/science.abb7015.
4. Poon LL, Chu DK, Chan KH, Wong OK, Ellis TM, Leung YH, et al. Identification of a novel coronavirus in bats. J Virol. 2005;79(4):2001-9. doi: 10.1128/JVI.79.4.2001-2009.2005.
5. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310(5748):676-9. doi: 10.1126/science.1118391.
6. Woo PC, Lau SK, Li KS, Poon RW, Wong BH, Tsoi HW, et al. Molecular diversity of coronaviruses in bats. Virology. 2006;351(1):180-7. doi: 10.1016/j.virol.2006.02.041.
7. Mihindukulasuriya KA, Wu G, St Leger J, Nordhausen RW, Wang D. Identification of a novel coronavirus from a beluga whale by using a panviral microarray. J Virol. 2008;82(10):5084-8. doi: 10.1128/JVI.02722-07.
8. Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121(1):190-3. doi: 10.3181/00379727-121-30734.
9. Almeida JD, Tyrrell DA. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol. 1967;1(2):175-8. doi: 10.1099/0022-1317-1-2-175.
10. Bradburne AF, Bynoe ML, Tyrrell DA. Effects of a "new" human respiratory virus in volunteers. Br Med J. 1967;3(5568):767-9. doi: 10.1136/bmj.3.5568.767.
11. McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci U S A. 1967;57(4):933-40. doi: 10.1073/pnas.57.4.933.
12. Burks JS, DeVald BL, Jankovsky LD, Gerdes JC. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science. 1980;209(4459):933-4. doi: 10.1126/science.7403860.
13. Murray RS, Brown B, Brian D, Cabirac GF. Detection of coronavirus RNA and antigen in multiple sclerosis brain. Ann Neurol. 1992;31(5):525-33. doi: 10.1002/ana.410310511.
14. Stewart JN, Mounir S, Talbot PJ. Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology. 1992;191(1):502-5. doi: 10.1016/0042-6822(92)90220-j.
15. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000;74(19):8913-21. doi: 10.1128/jvi.74.19.8913-8921.2000.
16. Dessau RB, Lisby G, Frederiksen JL. Coronaviruses in brain tissue from patients with multiple sclerosis. Acta Neuropathol. 2001;101(6):601-4. doi: 10.1007/s004010000331.
17. Gilden DH. Infectious causes of multiple sclerosis. Lancet Neurol. 2005;4(3):195-202. doi: 10.1016/S1474-4422(05)01017-3.
18. Hansen GH, Delmas B, Besnardeau L, Vogel LK, Laude H, Sjöström H, et al. The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment. J Virol. 1998;72(1):527-34. doi: 10.1128/JVI.72.1.527-534.1998.
19. Perlman S. Pathogenesis of coronavirus-induced infections. Review of pathological and immunological aspects. Adv Exp Med Biol. 1998;440:503-13.
20. Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635-64. doi: 10.1128/MMBR.69.4.635-664.2005.
21. He B, Zhang Y, Xu L, Yang W, Yang F, Feng Y, et al. Identification of diverse alphacoronaviruses and genomic characterization of a novel severe
acute respiratory syndrome-like coronavirus from bats in China. J Virol. 2014;88(12):7070-82. doi: 10.1128/JVI.00631-14.
22. Shi Z, Hu Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus Res. 2008;133(1):74-87. doi: 10.1016/j.virusres.2007.03.012.
23. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102(39):14040-5. doi: 10.1073/pnas.0506735102.
24. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. doi: 10.1056/NEJMoa2001017.
25. WHO. Coronavirus disease 2019. Available from: https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019 (accessed May 2020).
26. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. doi: 10.1038/s41564-020-0695-z.
27. Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. 2020;12(2):135. doi: 10.3390/v12020135.
28. Lauber C, Gorbalenya AE. Partitioning the genetic diversity of a virus family: approach and evaluation through a case study of picornaviruses. J Virol. 2012;86(7):3890-904. doi: 10.1128/JVI.07173-11.
29. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. Virus taxonomy: classification and nomenclature of viruses. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier; 2011.
30. Bárcena M, Oostergetel GT, Bartelink W, Faas FG, Verkleij A, Rottier PJ, et al. Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proc Natl Acad Sci U S A. 2009;106(2):582-7. doi: 10.1073/pnas.0805270106.
31. Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol. 2006;80(16):7918-28. doi: 10.1128/JVI.00645-06.
32. Maier HJ, Bickerton E, Britton P. Coronaviruses: methods and protocols. Springer; 2015.
33. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A. 2009;106(14):5871-6. doi: 10.1073/pnas.0809524106.
34. Kubo H, Yamada YK, Taguchi F. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol. 1994;68(9):5403-10. doi: 10.1128/JVI.68.9.5403-5410.1994.
35. Zeng F, Chow KY, Leung FC. Estimated timing of the last common ancestor of the SARS coronavirus. N Engl J Med. 2003;349(25):2469-70. doi: 10.1056/NEJM200312183492523.
36. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-92.e6. doi: 10.1016/j.cell.2020.02.058.
37. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-9. doi: 10.1038/s41564-020-0688-y.
38. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. doi: 10.1126/science.abb2507.
39. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221-36. doi: 10.1080/22221751.2020.1719902.
40. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. doi: 10.1038/s41586-020-2012-7.
41. Zhang Z, Wu Q, Zhang T. Pangolin homology associated with 2019-nCoV. bioRxiv. 2020. doi: 10.1101/2020.02.19.950253.
42. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-92. doi: 10.1038/s41579-018-0118-9.
43. Fischer H, Tschachler E, Eckhart L. Pangolins Lack IFIH1/MDA5, a Cytoplasmic RNA Sensor That Initiates Innate Immune Defense Upon Coronavirus Infection. Front Immunol. 2020;11:939. doi: 10.3389/fimmu.2020.00939.
44. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20. doi: 10.1128/JVI.00127-20.
45. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020;71(15):778-85. doi: 10.1093/cid/ciaa310.
46. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. doi: 10.1038/s41586-020-2008-3.
47. Hu D, Zhu C, Ai L, He T, Wang Y, Ye F, et al. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect. 2018;7(1):154. doi: 10.1038/s41426-018-0155-5.
48. McIntosh K, Becker WB, Chanock RM. Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease. Proc Natl Acad Sci U S A. 1967;58(6):2268-73. doi: 10.1073/pnas.58.6.2268.
49. Gámbaro F, Behillil S, Baidaliuk A, Donati F, Albert M, Alexandru A, et al. Introductions and early spread of SARS-CoV-2 in France, 24 January to 23 March 2020. Euro Surveill. 2020;25(26):2001200. doi: 10.2807/1560-7917.ES.2020.25.26.2001200.
50. Deslandes A, Berti V, Tandjaoui-Lambotte Y, Alloui C, Carbonnelle E, Zahar JR, et al. SARS-CoV-2 was already spreading in France in late December 2019. Int J Antimicrob Agents. 2020;55(6):106006. doi: 10.1016/j.ijantimicag.2020.106006.
51. GISAID. Available from: https://www.gisaid.org/ (accessed May 2020).
52. Lauring AS, Andino R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010;6(7):e1001005. doi: 10.1371/journal.ppat.1001005.
53. Domingo E, Baranowski E, Ruiz-Jarabo CM, Martín-Hernández AM, Sáiz JC, Escarmís C. Quasispecies structure and persistence of RNA viruses. Emerg Infect Dis. 1998;4(4):521-7. doi: 10.3201/eid0404.980402.
54. Domingo E, Martin V, Perales C, Grande-Pérez A, García-Arriaza J, Arias A. Viruses as quasispecies: biological implications. Curr Top Microbiol Immunol. 2006;299:51-82. doi: 10.1007/3-540-26397-7_3.
55. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet. 2008;9(4):267-76. doi: 10.1038/nrg2323.
56. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S. Rapid evolution of RNA genomes. Science. 1982;215(4540):1577-85. doi: 10.1126/science.7041255.
57. Batschelet E, Domingo E, Weissmann C. The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene. 1976;1(1):27-32. doi: 10.1016/0378-1119(76)90004-4.
58. Steinhauer DA, Holland JJ. Rapid evolution of RNA viruses. Annu Rev Microbiol. 1987;41:409-33. doi: 10.1146/annurev.mi.41.100187.002205.
59. Shen Z, Xiao Y, Kang L, Ma W, Shi L, Zhang L, et al. Genomic Diversity of Severe Acute Respiratory Syndrome-Coronavirus 2 in Patients With Coronavirus Disease 2019. Clin Infect Dis. 2020;71(15):713-20. doi: 10.1093/cid/ciaa203.
60. Goldmann DA. Transmission of viral respiratory infections in the home. Pediatr Infect Dis J. 2000;19(10 Suppl):S97-102. doi: 10.1097/00006454-200010001-00002.
61. Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol. 2020;81:104260. doi: 10.1016/j.meegid.2020.104260.
62. Ni M, Chen C, Qian J, Xiao HX, Shi WF, Luo Y, et al. Intra-host dynamics of Ebola virus during 2014. Nat Microbiol. 2016;1(11):16151. doi: 10.1038/nmicrobiol.2016.151.
63. Zhao Z, Li H, Wu X, Zhong Y, Zhang K, Zhang YP, et al. Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol. 2004;4:21. doi: 10.1186/1471-2148-4-21.
64. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, et al. The Genome sequence of the SARS-associated coronavirus. Science. 2003 30;300(5624):1399-404. doi: 10.1126/science.1085953.
65. Braun MJ, Clements JE, Gonda MA. The visna virus genome: evidence for a hypervariable site in the env gene and sequence homology among lentivirus envelope proteins. J Virol. 1987;61(12):4046-54. doi: 10.1128/JVI.61.12.4046-4054.1987.
66. Chinese SARS Molecular Epidemiology Consortium. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science. 2004;303(5664):1666-9. doi: 10.1126/science.1092002.
67. Brown EG, Tetro JA. Comparative analysis of the SARS coronavirus genome: a good start to a long journey. Lancet. 2003;361(9371):1756-7. doi: 10.1016/S0140-6736(03)13444-7.
68. Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ, et al. Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam. N Engl J Med. 2020;382(9):872-4. doi: 10.1056/NEJMc2001272.
69. Zumla A, Hui DS. Infection control and MERS-CoV in health-care workers. Lancet. 2014;383(9932):1869-71. doi: 10.1016/S0140-6736(14)60852-7.
70. WHO. WHO statement on the Fifth Meeting of the IHR Emergency Committee concerning MERS-CoV. May 14, 2014. Available from: https://www.who.int/mediacentre/news/statements/2014/mers-20140514/en/ (accessed May 2020).
71. Sizun J, Yu MW, Talbot PJ. Survival of human coronaviruses 229E and OC43 in suspension and after drying onsurfaces: a possible source ofhospital-acquired infections. J Hosp Infect. 2000;46(1):55-60. doi: 10.1053/jhin.2000.0795.
72. Falsey AR, McCann RM, Hall WJ, Criddle MM, Formica MA, Wycoff D, et al. The "common cold" in frail older persons: impact of rhinovirus and coronavirus in a senior daycare center. J Am Geriatr Soc. 1997;45(6):706-11. doi: 10.1111/j.1532-5415.1997.tb01474.x.
73. Seto WH, Conly JM, Pessoa-Silva CL, Malik M, Eremin S. Infection prevention and control measures for acute respiratory infections in healthcare settings: an update. East Mediterr Health J. 2013;19 Suppl 1:S39-47.
74. Health Protection Agency (HPA) UK Novel Coronavirus Investigation team. Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013. Euro Surveill. 2013;18(11):20427. doi: 10.2807/ese.18.11.20427-en.
75. Pebody RG, Chand MA, Thomas HL, Green HK, Boddington NL, Carvalho C, et al. The United Kingdom public health response to an imported laboratory confirmed case of a novel coronavirus in September 2012. Euro Surveill. 2012;17(40):20292.
76. Buchholz U, Müller MA, Nitsche A, Sanewski A, Wevering N, Bauer-Balci T, et al. Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October-November 2012. Euro Surveill. 2013;18(8):20406.
77. Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Balfour HH Jr. Survival of influenza viruses on environmental surfaces. J Infect Dis. 1982;146(1):47-51. doi: 10.1093/infdis/146.1.47.
78. Ryan MA, Christian RS, Wohlrabe J. Handwashing and respiratory illness among young adults in military training. Am J Prev Med. 2001;21(2):79-83. doi: 10.1016/s0749-3797(01)00323-3.
79. van Dorp L, Richard D, Tan CCS, Shaw LP, Acman M, Balloux F. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Nat Commun. 2020;11(1):5986. doi: 10.1038/s41467-020-19818-2.
80. Buxton Bridges C, Katz JM, Seto WH, Chan PK, Tsang D, Ho W, et al. Risk of influenza A (H5N1) infection among health care workers exposed to patients with influenza A (H5N1), Hong Kong. J Infect Dis. 2000;181(1):344-8. doi: 10.1086/315213.
81. Evans ME, Hall KL, Berry SE. Influenza control in acute care hospitals. Am J Infect Control. 1997;25(4):357-62. doi: 10.1016/s0196-6553(97)90029-8.
82. Cunney RJ, Bialachowski A, Thornley D, Smaill FM, Pennie RA. An outbreak of influenza A in a neonatal intensive care unit. Infect Control Hosp Epidemiol. 2000;21(7):449-54. doi: 10.1086/501786.
83. Sugaya N, Kusumoto N, Suzuki Y, Nerome R, Nerome K. Large sequential outbreaks caused by influenza A (H3N2) and B viruses in a institution for the mentally handicapped. J Med Virol. 1996;50(2):120-5. doi: 10.1002/(SICI)1096-9071(199610)50:2<120::AID-JMV4>3.0.CO;2-C.
84. Bean B, Rhame FS, Hughes RS, Weiler MD, Peterson LR, Gerding DN. Influenza B: hospital activity during a community epidemic. Diagn Microbiol Infect Dis. 1983;1(3):177-83. doi: 10.1016/0732-8893(83)90016-0.
85. Paules CI, Marston HD, Fauci AS. Coronavirus Infections-More Than Just the Common Cold. JAMA. 2020;323(8):707-8. doi: 10.1001/jama.2020.0757.
86. Hall CB. The spread of influenza and other respiratory viruses: complexities and conjectures. Clin Infect Dis. 2007;45(3):353-9. doi: 10.1086/519433.
87. Langmuir AD. Changing concepts of airborne infection of acute contagious diseases: a reconsideration of classic epidemiologic theories. Ann N Y Acad Sci. 1980;353:35-44. doi: 10.1111/j.1749-6632.1980.tb18903.x.
88. van den Brand JM, Smits SL, Haagmans BL. Pathogenesis of Middle East respiratory syndrome coronavirus. J Pathol. 2015;235(2):175-84. doi: 10.1002/path.4458.
89. Burke JP. Infection control - a problem for patient safety. N Engl J Med. 2003;348(7):651-6. doi: 10.1056/NEJMhpr020557.
90. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24(8):1634-43. doi: 10.1038/sj.emboj.7600640.
91. Qu XX, Hao P, Song XJ, Jiang SM, Liu YX, Wang PG, et al. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. J Biol Chem. 2005;280(33):29588-95. doi: 10.1074/jbc.M500662200.
92. Bell DM; World Health Organization Working Group on International and Community Transmission of SARS. Public health interventions and SARS spread, 2003. Emerg Infect Dis. 2004;10(11):1900-6. doi: 10.3201/eid1011.040729.
93. Fraser C, Riley S, Anderson RM, Ferguson NM. Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci U S A. 2004;101(16):6146-51. doi: 10.1073/pnas.0307506101.
94. Mumford JD. Environmental risk evaluation in quarantine decision making. In: Anderson K, McRae C, Wilson D. The economics of quarantine and the SPS agreement. University of Adelaide Press; 2001:353-84.
95. Breukers A, Mourits M, van der Werf W, Lansink AO. Costs and benefits of controlling quarantine diseases: a bio‐economic modeling approach. Agric Econ. 2008;38(2):137-49. doi: 10.1111/j.1574-0862.2008.00288.x.
96. Mumford JD. Economic issues related to quarantine in international trade. Eur Rev Agric Econ. 2002;29(3):329-48.
97. James S, Anderson K. On the need for more economic assessment of quarantine policies. Aust J Agric Resour Econ. 1998;42(4):425-44. doi: 10.22004/ag.econ.117286.
98. Leung GM, Chung PH, Tsang T, Lim W, Chan SK, Chau P, et al. SARS-CoV antibody prevalence in all Hong Kong patient contacts. Emerg Infect Dis. 2004;10(9):1653-6. doi: 10.3201/eid1009.040155.
99. Riley S, Fraser C, Donnelly CA, Ghani AC, Abu-Raddad LJ, Hedley AJ, et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science. 2003;300(5627):1961-6. doi: 10.1126/science.1086478.
100. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302(5643):276-8. doi: 10.1126/science.1087139.
101. Centers for Disease Control and Prevention (CDC). Prevalence of IgG antibody to SARS-associated coronavirus in animal traders--Guangdong Province, China, 2003. MMWR Morb Mortal Wkly Rep. 2003;52(41):986-7.
102. Yu IT, Li Y, Wong TW, Tam W, Chan AT, Lee JH, et al. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med. 2004;350(17):1731-9. doi: 10.1056/NEJMoa032867.
103. de Wit E, Rasmussen AL, Falzarano D, Bushmaker T, Feldmann F, Brining DL, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques.
Proc Natl Acad Sci U S A. 2013;110(41):16598-603. doi: 10.1073/pnas.1310744110.
104. Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol. 2015;235(2):185-95. doi: 10.1002/path.4454.
105. Coleman CM, Frieman MB. Coronaviruses: important emerging human pathogens. J Virol. 2014;88(10):5209-12. doi: 10.1128/JVI.03488-13.
106. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995-4008. doi: 10.1128/JVI.06540-11.
107. Lau SK, Woo PC, Yip CC, Fan RY, Huang Y, Wang M, et al. Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits. J Virol. 2012;86(10):5481-96. doi: 10.1128/JVI.06927-11.
108. Lau SK, Poon RW, Wong BH, Wang M, Huang Y, Xu H, et al. Coexistence of different genotypes in the same bat and serological characterization of Rousettus bat coronavirus HKU9 belonging to a novel Betacoronavirus subgroup. J Virol. 2010;84(21):11385-94. doi: 10.1128/JVI.01121-10.
109. Lau SK, Woo PC, Li KS, Huang Y, Wang M, Lam CS, et al. Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology. 2007;367(2):428-39. doi: 10.1016/j.virol.2007.06.009.
110. Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M. The 2019-new coronavirus epidemic: Evidence for virus evolution. J Med Virol. 2020;92(4):455-9. doi: 10.1002/jmv.25688.
111. Kim YI, Kim SG, Kim SM, Kim EH, Park SJ, Yu KM, et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe. 2020;27(5):704-9.e2. doi: 10.1016/j.chom.2020.03.023.
112. Richard M, Kok A, de Meulder D, Bestebroer TM, Lamers MM, Okba NMA, et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun. 2020;11(1):3496. doi: 10.1038/s41467-020-17367-2.
113. Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L, Schulz J, et al. Respiratory disease and virus shedding in rhesus macaques inoculated with SARS-CoV-2. bioRxiv [Preprint]. 2020:2020.03.21.001628. doi: 10.1101/2020.03.21.001628.
114. World Health Organization. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations: scientific brief, 29 March 2020. Available from: https://apps.who.int/iris/handle/10665/331616?locale-attribute=es& (accessed May 2020).
115. Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA. 2020;323(16):1610-2. doi: 10.1001/jama.2020.3227.
116. Hasony HJ, Macnaughton MR. Prevalence of human coronavirus antibody in the population of southern Iraq. J Med Virol. 1982;9(3):209-16. doi: 10.1002/jmv.1890090308.
117. Buchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR, Subbarao K, et al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci U S A. 2004;101(26):9804-9. doi: 10.1073/pnas.0403492101.
118. ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006;3(7):e237. doi: 10.1371/journal.pmed.0030237.
119. Hsueh PR, Kao CL, Lee CN, Chen LK, Ho MS, Sia C, et al. SARS antibody test for serosurveillance. Emerg Infect Dis. 2004;10(9):1558-62. doi: 10.3201/eid1009.040101.
120. Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361(9371):1767-72. doi: 10.1016/s0140-6736(03)13412-5.
121. Grant PR, Garson JA, Tedder RS, Chan PK, Tam JS, Sung JJ. Detection of SARS coronavirus in plasma by real-time RT-PCR. N Engl J Med. 2003;349(25):2468-9. doi: 10.1056/NEJM200312183492522.
122. Wu HS, Chiu SC, Tseng TC, Lin SF, Lin JH, Hsu YH, et al. Serologic and molecular biologic methods for SARS-associated coronavirus infection, Taiwan. Emerg Infect Dis. 2004;10(2):304-10. doi: 10.3201/eid1002.030731.
123. World Health Organization. Communicable disease surveillance & response. Use of laboratory methods for SARS diagnosis. Available from: https://www.who.int/health-topics/severe-acute-respiratory-syndrome/technical-guidance/laboratory/use-of-laboratory-methods-for-sars-diagnosis(accessed May 2020).
124. Yam WC, Chan KH, Poon LL, Guan Y, Yuen KY, Seto WH, et al. Evaluation of reverse transcription-PCR assays for rapid diagnosis of severe acute respiratory syndrome associated with a novel coronavirus. J Clin Microbiol. 2003;41(10):4521-4. doi: 10.1128/jcm.41.10.4521-4524.2003.
125. Centers for Disease Control and Prevention (CDC). Revised U.S. surveillance case definition for severe acute respiratory syndrome (SARS) and update on SARS cases--United States and worldwide, December 2003. MMWR Morb Mortal Wkly Rep. 2003;52(49):1202-6.
126. Peiris JS, Yuen KY, Osterhaus AD, Stöhr K. The severe acute respiratory syndrome. N Engl J Med. 2003;349(25):2431-41. doi: 10.1056/NEJMra032498.
127. Li G, Chen X, Xu A. Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med. 2003;349(5):508-9. doi: 10.1056/NEJM200307313490520.
128. Woo PC, Lau SK, Wong BH, Chan KH, Chu CM, Tsoi HW, et al. Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clin Diagn Lab Immunol. 2004;11(4):665-8. doi: 10.1128/CDLI.11.4.665-668.2004.
129. Shi Y, Wan Z, Li L, Li P, Li C, Ma Q, et al. Antibody responses against SARS-coronavirus and its nucleocaspid in SARS patients. J Clin Virol. 2004;31(1):66-8. doi: 10.1016/j.jcv.2004.05.006.
130. Sanna PP, Burton DR. Role of antibodies in controlling viral disease: lessons from experiments of nature and gene knockouts. J Virol. 2000;74(21):9813-7. doi: 10.1128/jvi.74.21.9813-9817.2000.
131. Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020;26(7):1033-6. doi: 10.1038/s41591-020-0913-5.
132. Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT, Baril L, et al. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis. 2006;193(6):792-5. doi: 10.1086/500469.
133. Callow KA, Parry HF, Sergeant M, Tyrrell DA. The time course of the immune response to experimental coronavirus infection of man. Epidemiol Infect. 1990;105(2):435-46. doi: 10.1017/s0950268800048019.
134. Choe PG, Perera RAPM, Park WB, Song KH, Bang JH, Kim ES, et al. MERS-CoV Antibody Responses 1 Year after Symptom Onset, South Korea, 2015. Emerg Infect Dis. 2017;23(7):1079-1084. doi: 10.3201/eid2307.170310.
135. Payne DC, Iblan I, Rha B, Alqasrawi S, Haddadin A, Al Nsour M, et al. Persistence of Antibodies against Middle East Respiratory Syndrome Coronavirus. Emerg Infect Dis. 2016;22(10):1824-6. doi: 10.3201/eid2210.160706.
136. Haveri A, Smura T, Kuivanen S, Österlund P, Hepojoki J, Ikonen N, et al. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Euro Surveill. 2020;25(11):2000266. doi: 10.2807/1560-7917.ES.2020.25.11.2000266.
137. Cowling BJ, Chan KH, Fang VJ, Lau LLH, So HC, Fung ROP, et al. Comparative epidemiology of pandemic and seasonal influenza A in households. N Engl J Med. 2010;362(23):2175-84. doi: 10.1056/NEJMoa0911530.
138. Liu L, Xie J, Sun J, Han Y, Zhang C, Fan H, et al. Longitudinal profiles of immunoglobulin G antibodies against severe acute respiratory syndrome coronavirus components and neutralizing activities in recovered patients. Scand J Infect Dis. 2011;43(6-7):515-21. doi: 10.3109/00365548.2011.560184.
139. Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386-389. doi: 10.1080/22221751.2020.1729071.
140. Amanat F, Meade P, Strohmeier S, Krammer F. Cross-reactive antibodies binding to H4 hemagglutinin protect against a lethal H4N6 influenza virus challenge in the mouse model. Emerg Microbes Infect. 2019;8(1):155-168. doi: 10.1080/22221751.2018.1564369.
141. Wohlbold TJ, Podolsky KA, Chromikova V, Kirkpatrick E, Falconieri V, Meade P, et al. Broadly protective murine monoclonal antibodies against influenza B virus target highly conserved neuraminidase epitopes. Nat Microbiol. 2017;2(10):1415-1424. doi: 10.1038/s41564-017-0011-8.
142. Stadlbauer D, Amanat F, Chromikova V, Jiang K, Strohmeier S, Arunkumar GA, et al. SARS-CoV-2 Seroconversion in Humans: A Detailed Protocol for a Serological Assay, Antigen Production, and Test Setup. Curr Protoc Microbiol. 2020;57(1):e100. doi: 10.1002/cpmc.100.
143. Huang LR, Chiu CM, Yeh SH, Huang WH, Hsueh PR, Yang WZ, et al. Evaluation of antibody responses against SARS coronaviral nucleocapsid or spike proteins by immunoblotting or ELISA. J Med Virol. 2004;73(3):338-46. doi: 10.1002/jmv.20096.
144. Kellam P, Barclay W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J Gen Virol. 2020;101(8):791-7. doi: 10.1099/jgv.0.001439.
145. Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov. 2003;2(1):52-62. doi: 10.1038/nrd984.
146. Wong VW, Dai D, Wu AK, Sung JJ. Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med J. 2003;9(3):199-201.
147. Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S, Tatti K, et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol. 2004;78(7):3572-7. doi: 10.1128/jvi.78.7.3572-3577.2004.
148. Zhang Z, Xie YW, Hong J, Zhang X, Kwok SY, Huang X, et al. Purification of severe acute respiratory syndrome hyperimmune globulins for intravenous injection from convalescent plasma. Transfusion. 2005;45(7):1160-4. doi: 10.1111/j.1537-2995.2005.00179.x.
149. Sui J, Li W, Roberts A, Matthews LJ, Murakami A, Vogel L, et al. Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants. J Virol. 2005;79(10):5900-6. doi: 10.1128/JVI.79.10.5900-5906.2005.
150. Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med. 2004;10(8):871-5. doi: 10.1038/nm1080.
151. ter Meulen J, Bakker AB, van den Brink EN, Weverling GJ, Martina BE, Haagmans BL, et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet. 2004;363(9427):2139-41. doi: 10.1016/S0140-6736(04)16506-9.
152. Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol. 2001;75(22):10892-905. doi: 10.1128/JVI.75.22.10892-10905.2001.
153. Xu D, Zhang Z, Wang FS. SARS-associated coronavirus quasispecies in individual patients. N Engl J Med. 2004;350(13):1366-7. doi: 10.1056/NEJMc032421.
154. Liu J, Lim SL, Ruan Y, Ling AE, Ng LF, Drosten C, et al. SARS transmission pattern in Singapore reassessed by viral sequence variation analysis. PLoS Med. 2005;2(2):e43. doi: 10.1371/journal.pmed.0020043.
155. Poon LL, Leung CS, Chan KH, Yuen KY, Guan Y, Peiris JS. Recurrent mutations associated with isolation and passage of SARS coronavirus in cells from non-human primates. J Med Virol. 2005;76(4):435-40. doi: 10.1002/jmv.20379.
156. Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019;4(4):e123158. doi: 10.1172/jci.insight.123158.
157. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020;368(6493):860-8. doi: 10.1126/science.abb5793.
158. Eickhoff TC, Sherman IL, Serfling RE. Observations on excess mortality associated with epidemic influenza. JAMA. 1961;176:776-82. doi: 10.1001/jama.1961.03040220024005.
159. Blumenfeld HL, Kilbourne ED, LOURIA DB, Rogers DE. Studies on influenza in the pandemic of 1957-1958. I. An epidemiologic, clinical and serologic investigation of an intrahospital epidemic, with a note on vaccination efficacy. J Clin Invest. 1959;38(1 Part 2):199-212. doi: 10.1172/JCI103789.
160. Martin WJ. Recent changes in the death rate from influenza. Br Med J. 1950;1(4648):267. doi: 10.1136/bmj.1.4648.267.
161. Rosenwald MS. History’s deadliest pandemics, from ancient Rome to modern America. Available from: https://www.spokesman.com/stories/2020/apr/15/historys-deadliest-pandemics-from-ancient-rome-to-/ (accessed May 2020).
162. Harper SA, Bradley JS, Englund JA, File TM, Gravenstein S, Hayden FG, et al. Seasonal influenza in adults and children--diagnosis, treatment, chemoprophylaxis, and institutional outbreak management: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(8):1003-32. doi: 10.1086/598513.
163. Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet. 2018;391(10127):1285-300. doi: 10.1016/S0140-6736(17)33293-2.
164. GBD 2017 Influenza Collaborators. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2019;7(1):69-89. doi: 10.1016/S2213-2600(18)30496-X.
165. Simonsen L, Spreeuwenberg P, Lustig R, Taylor RJ, Fleming DM, Kroneman M, et al. Global mortality estimates for the 2009 Influenza Pandemic from the GLaMOR project: a modeling study. PLoS Med. 2013;10(11):e1001558. doi: 10.1371/journal.pmed.1001558.
166. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA. 2003;289(2):179-86. doi: 10.1001/jama.289.2.179.
167. Hayward AC, Harling R, Wetten S, Johnson AM, Munro S, Smedley J, et al. Effectiveness of an influenza vaccine programme for care home staff to prevent death, morbidity, and health service use among residents: cluster randomised controlled trial. BMJ. 2006;333(7581):1241. doi: 10.1136/bmj.39010.581354.55.
168. Longini IM Jr, Koopman JS, Monto AS, Fox JP. Estimating household and community transmission parameters for influenza. Am J Epidemiol. 1982;115(5):736-51. doi: 10.1093/oxfordjournals.aje.a113356.
169. Gani R, Hughes H, Fleming D, Griffin T, Medlock J, Leach S. Potential impact of antiviral drug use during influenza pandemic. Emerg Infect Dis. 2005;11(9):1355-62. doi: 10.3201/eid1209.041344.
170. Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an influenza pandemic. Nature. 2006;442(7101):448-52. doi: 10.1038/nature04795.
171. Ferguson NM, Fraser C, Donnelly CA, Ghani AC, Anderson RM. Public health. Public health risk from the avian H5N1 influenza epidemic. Science. 2004;304(5673):968-9. doi: 10.1126/science.1096898.
172. Leung NH, Xu C, Ip DK, Cowling BJ. Review Article: The Fraction of Influenza Virus Infections That Are Asymptomatic: A Systematic Review and Meta-analysis. Epidemiology. 2015;26(6):862-72. doi: 10.1097/EDE.0000000000000340.
173. Saad-Roy CM, Wingreen NS, Levin SA, Grenfell BT. Dynamics in a simple evolutionary-epidemiological model for the evolution of an initial asymptomatic infection stage. Proc Natl Acad Sci U S A. 2020;117(21):11541-50. doi: 10.1073/pnas.1920761117.
174. Argente DO, Hsieh CT, Lee M. The Cost of Privacy: Welfare Effects of the Disclosure of Covid-19 Cases. NBER Work Pap Ser. 2020. doi: 10.3386/w27220.
175. Ing AJ, Cocks C, Green JP. COVID-19: in the footsteps of Ernest Shackleton. Thorax. 2020;75(8):693-4. doi: 10.1136/thoraxjnl-2020-215091.
176. Zhou G, Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Biol Sci. 2020;16(10):1718-23. doi: 10.7150/ijbs.45123.
177. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020;117(17):9490-6. doi: 10.1073/pnas.2004168117.
178. World Health Organization Writing Group, Bell D, Nicoll A, Fukuda K, Horby P, Monto A, et al. Non-pharmaceutical interventions for pandemic influenza, international measures. Emerg Infect Dis. 2006;12(1):81-7. doi: 10.3201/eid1201.051370.
179. Hayward AC, Fragaszy EB, Bermingham A, Wang L, Copas A, Edmunds WJ, et al. Comparative community burden and severity of seasonal and pandemic influenza: results of the Flu Watch cohort study. Lancet Respir Med. 2014;2(6):445-54. doi: 10.1016/S2213-2600(14)70034-7.
180. Dijkman R, Jebbink MF, El Idrissi NB, Pyrc K, Müller MA, Kuijpers TW, et al. Human coronavirus NL63 and 229E seroconversion in children. J Clin Microbiol. 2008;46(7):2368-73. doi: 10.1128/JCM.00533-08.
181. Piedra PA, Gaglani MJ, Kozinetz CA, Herschler G, Riggs M, Griffith M, et al. Herd immunity in adults against influenza-related illnesses with use of the trivalent-live attenuated influenza vaccine (CAIV-T) in children. Vaccine. 2005;23(13):1540-8. doi: 10.1016/j.vaccine.2004.09.025.
182. Webster RG. Immunity to influenza in the elderly. Vaccine. 2000;18(16):1686-9. doi: 10.1016/s0264-410x(99)00507-1.
183. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. doi: 10.1016/S0140-6736(20)30251-8.
184. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016;24(6):490-502. doi: 10.1016/j.tim.2016.03.003.
185. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-99. doi: 10.1056/NEJMoa2001282.
186. Pelegrin M, Naranjo-Gomez M, Piechaczyk M. Antiviral Monoclonal Antibodies: Can They Be More Than Simple Neutralizing Agents? Trends Microbiol. 2015;23(10):653-65. doi: 10.1016/j.tim.2015.07.005.
187. Schmaljohn AL, McClain D. Alphaviruses (Togaviridae) and Flaviviruses (Flaviviridae). In: Baron S, editor. Medical Microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston; 1996:Chapter 54.
188. Brenner BG, Gryllis C, Wainberg MA. Role of antibody-dependent cellular cytotoxicity and lymphokine-activated killer cells in AIDS and related diseases. J Leukoc Biol. 1991;50(6):628-40. doi: 10.1002/jlb.50.6.628.
189. Bernasconi NL, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science. 2002;298(5601):2199-202. doi: 10.1126/science.1076071.
190. Kurosaki T, Kometani K, Ise W. Memory B cells. Nat Rev Immunol. 2015;15(3):149-59. doi: 10.1038/nri3802.
191. Diamond MS, Shrestha B, Marri A, Mahan D, Engle M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol. 2003;77(4):2578-86. doi: 10.1128/jvi.77.4.2578-2586.2003.
192. Yang Y, Yang M, Yuan J, Wang F, Wang Z, Li J, et al. Laboratory Diagnosis and Monitoring the Viral Shedding of SARS-CoV-2 Infection. Innovation. 2020;1(3):100061. Doi: 10.1016/j.xinn.2020.100061.
193. Ludert JE, Alcalá AC, Liprandi F. Primer pair p289-p290, designed to detect both noroviruses and sapoviruses by reverse transcription-PCR, also detects rotaviruses by cross-reactivity. J Clin Microbiol. 2004;42(2):835-6. doi: 10.1128/jcm.42.2.835-836.2004.
194. Atmar RL, Estes MK. Diagnosis of noncultivatable gastroenteritis viruses, the human caliciviruses. Clin Microbiol Rev. 2001;14(1):15-37. doi: 10.1128/CMR.14.1.15-37.2001.
195. Vinjé J, Vennema H, Maunula L, von Bonsdorff CH, Hoehne M, Schreier E, et al. International collaborative study to compare reverse transcriptase PCR assays for detection and genotyping of noroviruses. J Clin Microbiol. 2003;41(4):1423-33. doi: 10.1128/jcm.41.4.1423-1433.2003.
196. Vijgen L, Keyaerts E, Moës E, Maes P, Duson G, Van Ranst M. Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E. J Clin Microbiol. 2005;43(11):5452-6. doi: 10.1128/JCM.43.11.5452-5456.2005.
197. Drake JW, Holland JJ. Mutation rates among RNA viruses. Proc Natl Acad Sci U S A. 1999;96(24):13910-3. doi: 10.1073/pnas.96.24.13910.
198. Padmanabhan R, Mishra AK, Raoult D, Fournier PE. Genomics and metagenomics in medical microbiology. J Microbiol Methods. 2013;95(3):415-24. doi: 10.1016/j.mimet.2013.10.006.
199. Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P. Metagenomics for pathogen detection in public health. Genome Med. 2013;5(9):81. doi: 10.1186/gm485.
200. Liais E, Croville G, Mariette J, Delverdier M, Lucas MN, Klopp C, et al. Novel avian coronavirus and fulminating disease in guinea fowl, France. Emerg Infect Dis. 2014;20(1):105-8. doi: 10.3201/eid2001.130774.
201. Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Rev Mol Diagn. 2020;20(5):453-4. doi: 10.1080/14737159.2020.1757437.
202. Xi M, Wei Q, Qihua F, Ming G. Understanding the Influence Factors in Viral Nucleic Acid Test of 2019 novel Coronavirus (2019-nCoV). Chin J Lab Med. 2020;12:E002.
203. Wang Y, Kang H, Liu X, Tong Z. Combination of RT-qPCR testing and clinical features for diagnosis of COVID-19 facilitates management of SARS-CoV-2 outbreak. J Med Virol. 2020;92(6):538-9. doi: 10.1002/jmv.25721.
204. Rainer TH, Chan PK, Ip M, Lee N, Hui DS, Smit D, et al. The spectrum of severe acute respiratory syndrome-associated coronavirus infection. Ann Intern Med. 2004;140(8):614-9. doi: 10.7326/0003-4819-140-8-200404200-00008.
205. Reuters. Tanzania suspends laboratory head after president questions coronavirus tests. Available from: https://www.reuters.com/article/us-health-coronavirus-tanzania/tanzania-suspends-laboratory-head-after-president-questions-coronavirus-tests-idUSKBN22G295 (accessed May 2020).
206. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Ann Intern Med. 2020;173(4):262-7. doi: 10.7326/M20-1495.
207. Gao X, Zhou H, Wu C, Xiao Y, Ren L, Paranhos-Baccalà G, et al. Antibody against nucleocapsid protein predicts susceptibility to human coronavirus infection. J Infect. 2015;71(5):599-602. doi: 10.1016/j.jinf.2015.07.002.
208. Singh K, Vasoo S, Stevens J, Schreckenberger P, Trenholme G. Pitfalls in diagnosis of pandemic (novel) A/H1N1 2009 influenza. J Clin Microbiol. 2010;48(4):1501-3. doi: 10.1128/JCM.02483-09.
209. Blyth CC, Iredell JR, Dwyer DE. Rapid-test sensitivity for novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med. 2009;361(25):2493. doi: 10.1056/NEJMc0909049.
210. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020;296(2):E32-E40. doi: 10.1148/radiol.2020200642.
211. Huang P, Liu T, Huang L, Liu H, Lei M, Xu W, et al. Use of Chest CT in Combination with Negative RT-PCR Assay for the 2019 Novel Coronavirus but High Clinical Suspicion. Radiology. 2020;295(1):22-3. doi: 10.1148/radiol.2020200330.
212. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology. 2020;296(2):E41-E45. doi: 10.1148/radiol.2020200343.
213. Shi H, Han X, Zheng C. Evolution of CT Manifestations in a Patient Recovered from 2019 Novel Coronavirus (2019-nCoV) Pneumonia in Wuhan, China. Radiology. 2020;295(1):20. doi: 10.1148/radiol.2020200269.
214. Pan Y, Guan H, Zhou S, Wang Y, Li Q, Zhu T, et al. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol. 2020;30(6):3306-9. doi: 10.1007/s00330-020-06731-x.
215. Ho PL, Chau PH, Yip PS, Ooi GC, Khong PL, Ho JC, et al. A prediction rule for clinical diagnosis of severe acute respiratory syndrome. Eur Respir J. 2005;26(3):474-9. doi: 10.1183/09031936.05.1076704.
216. Roberts A, Paddock C, Vogel L, Butler E, Zaki S, Subbarao K. Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol. 2005;79(9):5833-8. doi: 10.1128/JVI.79.9.5833-5838.2005.
217. Papenburg J, Baz M, Hamelin MÈ, Rhéaume C, Carbonneau J, Ouakki M, et al. Household transmission of the 2009 pandemic A/H1N1 influenza virus: elevated laboratory‐confirmed secondary attack rates and evidence of asymptomatic infections. Clin Infect Dis. 2010;51(9):1033-41. doi: 10.1086/656582.
218. Miller E, Hoschler K, Hardelid P, Stanford E, Andrews N, Zambon M. Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study. Lancet. 2010;375(9720):1100-8. doi: 10.1016/S0140-6736(09)62126-7.
219. Zambon M, Hays J, Webster A, Newman R, Keene O. Diagnosis of influenza in the community: relationship of clinical diagnosis to confirmed virological, serologic, or molecular detection of influenza. Arch Intern Med. 2001;161(17):2116-22. doi: 10.1001/archinte.161.17.2116.
220. Call SA, Vollenweider MA, Hornung CA, Simel DL, McKinney WP. Does this patient have influenza? JAMA. 2005;293(8):987-97. doi: 10.1001/jama.293.8.987.
221. Hohdatsu T, Okada S, Koyama H. Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses. Arch Virol. 1991;117(1-2):85-95. doi: 10.1007/BF01310494.
222. Motokawa K, Hohdatsu T, Aizawa C, Koyama H, Hashimoto H. Molecular cloning and sequence determination of the peplomer protein gene of feline infectious peritonitis virus type I. Arch Virol. 1995;140(3):469-80. doi: 10.1007/BF01718424.
223. Takano T, Ishihara Y, Matsuoka M, Yokota S, Matsuoka-Kobayashi Y, Doki T, et al. Use of recombinant nucleocapsid proteins for serological diagnosis of feline coronavirus infection by three immunochromatographic tests. J Virol Methods. 2014;196:1-6. doi: 10.1016/j.jviromet.2013.10.014.
224. Ferris MM, Stepp PC, Ranno KA, Mahmoud W, Ibbitson E, Jarvis J, et al. Evaluation of the Virus Counter® for rapid baculovirus quantitation. J Virol Methods. 2011;171(1):111-6. doi: 10.1016/j.jviromet.2010.10.010.
225. Driskell JD, Jones CA, Tompkins SM, Tripp RA. One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles. Analyst. 2011;136(15):3083-90. doi: 10.1039/c1an15303j.
226. Mironov GG, Chechik AV, Ozer R, Bell JC, Berezovski MV. Viral quantitative capillary electrophoresis for counting intact viruses. Anal Chem. 2011;83(13):5431-5. doi: 10.1021/ac201006u.
227. Schwille P, Bieschke J, Oehlenschläger F. Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys Chem. 1997;66(2-3):211-28. doi: 10.1016/s0301-4622(97)00061-6.
228. Almazán F, González JM, Pénzes Z, Izeta A, Calvo E, Plana-Durán J, et al. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A. 2000;97(10):5516-21. doi: 10.1073/pnas.97.10.5516.
229. Yount B, Curtis KM, Baric RS. Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol. 2000;74(22):10600-11. doi: 10.1128/jvi.74.22.10600-10611.2000.
230. Thiel V, Herold J, Schelle B, Siddell SG. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol. 2001;82(Pt 6):1273-81. doi: 10.1099/0022-1317-82-6-1273.
231. Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol. 2001;75(24):12359-69. doi: 10.1128/JVI.75.24.12359-12369.2001.
232. Kouadio IK, Aljunid S, Kamigaki T, Hammad K, Oshitani H. Infectious diseases following natural disasters: prevention and control measures. Expert Rev Anti Infect Ther. 2012;10(1):95-104. doi: 10.1586/eri.11.155.
233. Sehulster L, Chinn RY; CDC; HICPAC. Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm Rep. 2003;52(RR-10):1-42.
234. Siegel JD, Rhinehart E, Jackson M, Chiarello L; Health Care Infection Control Practices Advisory Committee. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings. Am J Infect Control. 2007;35(10 Suppl 2):S65-164. doi: 10.1016/j.ajic.2007.10.007.
235. Chretien JH, Esswein JG. How frequent is bacterial superinfection of the pharynx in infectious mononucleosis? Observations on incidence, recognition, and management with antibiotics. Clin Pediatr (Phila). 1976;15(5):424-7. doi: 10.1177/000992287601500505.
236. Hansen NS, Byberg S, Hervig Jacobsen L, Bjerregaard-Andersen M, et al. Effect of early measles vaccine on pneumococcal colonization: A randomized trial from Guinea-Bissau. PLoS One. 2017;12(5):e0177547. doi: 10.1371/journal.pone.0177547.
237. Alter MJ. Epidemiology of viral hepatitis and HIV co-infection. J Hepatol. 2006;44(1 Suppl):S6-9. doi: 10.1016/j.jhep.2005.11.004.
238. Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G. Tuberculosis and HIV co-infection. PLoS Pathog. 2012;8(2):e1002464. doi: 10.1371/journal.ppat.1002464.
239. Rockstroh JK, Spengler U. HIV and hepatitis C virus co-infection. Lancet Infect Dis. 2004;4(7):437-44. doi: 10.1016/S1473-3099(04)01059-X.
240. Wilson J, Loveday H. Does glove use increase the risk of infection?. Nursing Times. 2014;110(39):12-5.
241. Heal JS, Blom AW, Titcomb D, Taylor A, Bowker K, Hardy JR. Bacterial contamination of surgical gloves by water droplets spilt after scrubbing. J Hosp Infect. 2003;53(2):136-9. doi: 10.1053/jhin.2002.1352.
242. Misteli H, Weber WP, Reck S, Rosenthal R, Zwahlen M, Fueglistaler P, et al. Surgical glove perforation and the risk of surgical site infection. Arch Surg. 2009;144(6):553-8; discussion 558. doi: 10.1001/archsurg.2009.60.
243. Piro S, Sammud M, Badi S, Al Ssabi L. Hospital-acquired malaria transmitted by contaminated gloves. J Hosp Infect. 2001;47(2):156-8. doi: 10.1053/jhin.2000.0907.
244. Ye D, Shan J, Huang Y, Li J, Li C, Liu X, et al. A gloves-associated outbreak of imipenem-resistant Acinetobacter baumannii in an intensive care unit in Guangdong, China. BMC Infect Dis. 2015;15:179. doi: 10.1186/s12879-015-0917-9.
245. Burke FJ. Use of non-sterile gloves in clinical practice. J Dent. 1990;18(2):79-89. doi: 10.1016/0300-5712(90)90089-w.
246. Go! & Express Live. EC COVID-19 testing. Available from: https://www.goexpress.co.za/2020/04/27/the-eastern-capes-covid-19-breakdown-and-coronavirus-hotspots/ec-covid-19-testing (accessed May 2020).
247. Daily Express News. Available from: https://www.express.com.pk/epaper/PoPupwindow.aspx?newsID=1107450831&Issue=NP_KHI&Date=20200521 (accessed May 2020).

Submitted date:

Reviewed date:

Accepted date:

Publication date:

604baf4ca9539551f164dd23 iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections