Iberoamerican Journal of Medicine
https://iberoamjmed.com/article/doi/10.53986/ibjm.2022.0034
Iberoamerican Journal of Medicine
Review

Bioresorbable scaffolds: current concepts and future technology

“Scaffolds” bioabsorbibles: conceptos actuales y tecnología futura

Debabrata Dash, Shahid A. Merchant

Downloads: 0
Views: 719

Abstract

The introduction of the drug-eluting (DES) stent to percutaneous coronary intervention (PCI) had a significant impact on patient management of coronary artery disease and has been called the “third revolution” in interventional cardiology after the first 2 revolutions of balloon angioplasty and bare-metal stents. The promise of adaptive remodeling, restoration of vasomotion, late luminal enlargement, and retained potential for future coronary artery bypass grafting at the site of previous PCI has been the driving force behind bioresorbable stent/scaffold (BRS) technology development. Moreover, because of the inherent risk of late and very late stent thrombosis, BRS potentially offers a solution and recent years have seen heightened interest, hype, and hope. In this current review, we are aiming to shed light on strength and weakness of various BRS including the future perspective.

Keywords

Bioresorbable scaffolds; Angioplasty; Coronary stents

Resumen

La introducción del stent liberador de fármacos (DES) en la intervención coronaria percutánea (ICP) tuvo un impacto significativo en el tratamiento de los pacientes con enfermedad de las arterias coronarias y se ha denominado la "tercera revolución" en cardiología intervencionista después de las dos primeras revoluciones de la angioplastia con balón y stents de metal desnudo. La promesa de remodelación adaptativa, restauración de la vasomoción, agrandamiento luminal tardío y potencial retenido para futuros injertos de derivación de la arteria coronaria en el sitio de la PCI anterior ha sido la fuerza impulsora detrás del desarrollo de la tecnología de stent/armazón biorreabsorbible (BRS). Además, debido al riesgo inherente de trombosis del stent tardía y muy tardía, la BRS ofrece potencialmente una solución y en los últimos años se ha visto un mayor interés, entusiasmo y esperanza. En esta revisión actual, nuestro objetivo es arrojar luz sobre la fortaleza y la debilidad de varios BRS, incluida la perspectiva futura.

Palabras clave

Scaffolds bioabsorbibles; Angioplastia; Stents coronarios

References

1. Palmerini T, Biondi-Zoccai G, Della Riva D, Mariani A, Genereux P, Branzi A, et al. Stent thrombosis with drug-eluting stents: is the paradigm shifting? J Am Coll Cardiol. 2013;62(21):1915-21. doi: 10.1016/j.jacc.2013.08.725.
2. Jinnouchi H, Torii S, Sakamoto A, Kolodgie FD, Virmani R, Finn AV. Fully bioresorbable vascular scaffolds: lessons learned and future directions. Nat Rev Cardiol. 2019;16(5):286-304. doi: 10.1038/s41569-018-0124-7.
3. Waksman R. Promise and challenges of bioabsorbable stents. Catheter Cardiovasc Interv. 2007;70(3):407-14. doi: 10.1002/ccd.21176.
4. Tesfamariam B. Bioresorbable vascular scaffolds: Biodegradation, drug delivery and vascular remodeling. Pharmacol Res. 2016;107:163-71. doi: 10.1016/j.phrs.2016.03.020.
5. Wykrzykowska JJ, Kraak RP, Hofma SH, van der Schaaf RJ, Arkenbout EK, IJsselmuiden AJ, et al. Bioresorbable Scaffolds versus Metallic Stents in Routine PCI. N Engl J Med. 2017;376(24):2319-28. doi: 10.1056/NEJMoa1614954.
6. Serruys PW, Chevalier B, Dudek D, Cequier A, Carrié D, Iniguez A, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015;385(9962):43-54. doi: 10.1016/S0140-6736(14)61455-0.
7. Hehrlein C, Schorch B, Kress N, Arab A, von Zur Mühlen C, Bode C, et al. Zn-alloy provides a novel platform for mechanically stable bioresorbable vascular stents. PLoS One. 2019;14(1):e0209111. doi: 10.1371/journal.pone.0209111.
8. Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation. 2011;123(7):779-97. doi: 10.1161/CIRCULATIONAHA.110.971606.
9. Simon C, Palmaz JC, Sprague EA. Influence of topography on endothelialization of stents: clues for new designs. J Long Term Eff Med Implants. 2000;10(1-2):143-51. doi: 10.1615/jlongtermeffmedimplants.v10.i12.120.
10. Serruys PW, Chevalier B, Sotomi Y, Cequier A, Carrié D, Piek JJ, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388(10059):2479-91. doi: 10.1016/S0140-6736(16)32050-5.
11. Byrne RA, Stefanini GG, Capodanno D, Onuma Y, Baumbach A, Escaned J, et al. Report of an ESC-EAPCI Task Force on the evaluation and use of bioresorbable scaffolds for percutaneous coronary intervention: executive summary. Eur Heart J. 2018;39(18):1591-601. doi: 10.1093/eurheartj/ehx488.
12. Kereiakes DJ, Ellis SG, Metzger DC, Caputo RP, Rizik DG, Teirstein PS, et al. Clinical Outcomes Before and After Complete Everolimus-Eluting Bioresorbable Scaffold Resorption: Five-Year Follow-Up From the ABSORB III Trial. Circulation. 2019;140(23):1895-903. doi: 10.1161/CIRCULATIONAHA.119.042584.
13. Xu B, Yang Y, Han Y, Huo Y, Wang L, Qi X, et al. Comparison of everolimus-eluting bioresorbable vascular scaffolds and metallic stents: three-year clinical outcomes from the ABSORB China randomised trial. EuroIntervention. 2018;14(5):e554-e561. doi: 10.4244/EIJ-D-17-00796.
14. Okada K, Honda Y, Kitahara H, Otagiri K, Tanaka S, Hollak MB, et al. Bioresorbable Scaffold for Treatment of Coronary Artery Lesions: Intravascular Ultrasound Results From the ABSORB Japan Trial. JACC Cardiovasc Interv. 2018;11(7):648-61. doi: 10.1016/j.jcin.2017.11.034.
15. Katagiri Y, Onuma Y, Asano T, Iñiguez A, Jensen LO, Cequier À, et al. Three-year follow-up of the randomised comparison between an everolimus-eluting bioresorbable scaffold and a durable polymer everolimus-eluting
metallic stent in patients with ST-segment elevation myocardial infarction (TROFI II trial). EuroIntervention. 2018;14(11):e1224-e1226. doi: 10.4244/EIJ-D-18-00839.
16. Arroyo D, Gendre G, Schukraft S, Kallinikou Z, Müller O, Baeriswyl G, et al. Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds: Two-year clinical outcomes of the EVERBIO II trial. Int J Cardiol. 2017;243:121-5. doi: 10.1016/j.ijcard.2017.05.053.
17. Byrne RA, Stefanini GG, Capodanno D, Onuma Y, Baumbach A, Escaned J, et al. Report of an ESC-EAPCI Task Force on the evaluation and use of bioresorbable scaffolds for percutaneous coronary intervention: executive summary. EuroIntervention. 2018;13(13):1574-86. doi: 10.4244/EIJ20170912-01.
18. Nef HM, Wiebe J, Foin N, Blachutzik F, Dörr O, Toyloy S, et al. A new novolimus-eluting bioresorbable coronary scaffold: Present status and future clinical perspectives. Int J Cardiol. 2017;227:127-33. doi: 10.1016/j.ijcard.2016.11.033.
19. Wiebe J, Dörr O, Ilstad H, Husser O, Liebetrau C, Boeder N, et al. Everolimus- Versus Novolimus-Eluting Bioresorbable Scaffolds for the Treatment of Coronary Artery Disease: A Matched Comparison. JACC Cardiovasc Interv. 2017;10(5):477-85. doi: 10.1016/j.jcin.2016.11.034.
20. Barreira G, Costa JR Jr, Costa R, Staico R, Chamie D, Slhessarenko JR, et al. Serial intravascular ultrasound evaluation of the DESolve™ novolimus-eluting bioresorbable coronary scaffold system. Catheter Cardiovasc Interv. 2018;92(6):E368-E374. doi: 10.1002/ccd.27591.
21. Verheye S, Schofer J, Maeng M, Skurk C, Botelho R, Ribamar Costa J, et al. Prospective, multi-center evaluation of the DESolve novolimus-eluting bioresorbable coronary scaffold: imaging outcomes and 5-year clinical and imaging results. J Am Coll Cardiol. 2017;70 (18_Supplement):B7-8. doi: 10.1016/j.jacc.2017.09.073.
22. Nef H, Wiebe J, Boeder N, Dörr O, Bauer T, Hauptmann KE, et al. A multicenter post-marketing evaluation of the Elixir DESolve® Novolimus-eluting bioresorbable coronary scaffold system: First results from the DESolve PMCF study. Catheter Cardiovasc Interv. 2018;92(6):1021-7. doi: 10.1002/ccd.27550.
23. Gunes HM, Gokdeniz T, Kizilirmak Yilmaz F, Demir GG, Guler E, Babur Guler G, et al. Real-life data regarding acute procedural success and 1-year clinical outcome of desolve bioresorbable scaffolds. J Interv Cardiol. 2017;30(3):189-94. doi: 10.1111/joic.12386.
24. Abizaid A, Vrolix M, Ribamar Costa J, Chamie D, Abizaid A, Castro J, et al. Multi-center evaluation of a novel 120 μm novolimus-eluting, fully bioresorbable coronary scaffold: first report of 6-month imaging and 12-month clinical results. J Am Coll Cardiol 2017;70 (18_Supplement):B135-136. doi: 10.1016/j.jacc.2017.09.418.
25. Mattesini A, Bartolini S, Sorini Dini C, Valente S, Parodi G, Stolcova M, et al. The DESolve novolimus bioresorbable Scaffold: from bench to bedside. J Thorac Dis. 2017;9(Suppl 9):S950-S958. doi: 10.21037/jtd.2017.07.25.
26. Abizaid A, Costa RA, Schofer J, Ormiston J, Maeng M, Witzenbichler B, et al. Serial Multimodality Imaging and 2-Year Clinical Outcomes of the Novel DESolve Novolimus-Eluting Bioresorbable Coronary Scaffold System for the Treatment of Single De Novo Coronary Lesions. JACC Cardiovasc Interv. 2016;9(6):565-74. doi: 10.1016/j.jcin.2015.12.004.
27. Capodanno D. Bioresorbable Scaffolds in Coronary Intervention: Unmet Needs and Evolution. Korean Circ J. 2018;48(1):24-35. doi: 10.4070/kcj.2017.0194.
28. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007;369(9576):1869-75. doi: 10.1016/S0140-6736(07)60853-8.
29. Rapetto C, Leoncini M. Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives. J Thorac Dis. 2017;9(Suppl 9):S903-S913. doi: 10.21037/jtd.2017.06.34.
30. Haude M, Erbel R, Erne P, Verheye S, Degen H, Böse D, et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet. 2013;381(9869):836-44. doi: 10.1016/S0140-6736(12)61765-6.
31. Haude M, Erbel R, Erne P, Verheye S, Degen H, Vermeersch P, et al. Safety and performance of the DRug-Eluting Absorbable Metal Scaffold (DREAMS) in patients with de novo coronary lesions: 3-year results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. EuroIntervention. 2016;12(2):e160-6. doi: 10.4244/EIJ-D-15-00371.
32. Haude M, Ince H, Kische S, Abizaid A, Tölg R, Alves Lemos P, et al. Safety and clinical performance of a drug eluting absorbable metal scaffold in the treatment of subjects with de novo lesions in native coronary arteries: Pooled 12-month outcomes of BIOSOLVE-II and BIOSOLVE-III. Catheter Cardiovasc Interv. 2018;92(7):E502-E511. doi: 10.1002/ccd.27680.
33. Haude M, Ince H, Kische S, Abizaid A, Tölg R, Alves Lemos P, et al. Safety and clinical performance of a drug eluting absorbable metal scaffold in the treatment of subjects with de novo lesions in native coronary arteries: Pooled 12-month outcomes of BIOSOLVE-II and BIOSOLVE-III. Catheter Cardiovasc Interv. 2018;92(7):E502-E511. doi: 10.1002/ccd.27680.
34. Verheye S, Wlodarczak A, Montorsi P, Torzewski K, Bennett J, Haude M, et al. TCT-45 safety and performance of the resorbable magnesium scaffold, Magmaris, in a real-world setting: first cohort subjects at 12-month follow-up of the BIOSOLVEIV registry. J Am Coll Cardiol. 2019;74(13 Suppl):B45. doi: 10.1016/j.jacc.2019.08.076.
35. Verheye S, Wlodarczak A, Montorsi P, Torzewski J, Bennett J, Haude M, et al. BIOSOLVE-IV-registry: Safety and performance of the Magmaris scaffold: 12-month outcomes of the first cohort of 1,075 patients. Catheter Cardiovasc Interv. 2021;98(1):E1-E8. doi: 10.1002/ccd.29260.
36. Fajadet J, Haude M, Joner M, Koolen J, Lee M, Tölg R, Waksman R. Magmaris preliminary recommendation upon commercial launch: a consensus from the expert panel on 14 April 2016. EuroIntervention. 2016;12(7):828-33. doi: 10.4244/EIJV12I7A137.
37. Abizaid A, Carrié D, Frey N, Lutz M, Weber-Albers J, Dudek D, et al. 6-Month Clinical and Angiographic Outcomes of a Novel Radiopaque Sirolimus-Eluting Bioresorbable Vascular Scaffold: The FANTOM II Study. JACC Cardiovasc Interv. 2017;10(18):1832-8. doi: 10.1016/j.jcin.2017.07.033.
38. Bouras G, Abizaid A, Lutz M, Carrie D, Weber-Albers J, Dudek D, et al. FANTOM II trial: safety & performance study of the fantom sirolimus-eluting bioresorbable coronary scaffold – 24-month follow-up clinical outcomes final results. J Am Coll Cardiol. 2018;72(13_Supplement):B174. doi: 10.1016/j.jacc.2018.08.1597.
39. Seth A, Onuma Y, Costa R, Chandra P, Bahl VK, Manjunath CN, et al. First-in-human evaluation of a novel poly-L-lactide based sirolimus-eluting bioresorbable vascular scaffold for the treatment of de novo native coronary artery lesions: MeRes-1 trial. EuroIntervention. 2017;13(4):415-23. doi: 10.4244/EIJ-D-17-00306.
40. Seth A, Onuma Y, Chandra P, Bahl VK, Manjunath CN, Mahajan AU, et al. Three-year clinical and two-year multimodality imaging outcomes of a thin-strut sirolimus-eluting bioresorbable vascular scaffold: MeRes-1 trial. EuroIntervention. 2019;15(7):607-14. doi: 10.4244/EIJ-D-19-00324.
41. Abizaid A, Kedev S, Ali RBM, Santoso T, Cequier A, van Geuns RVG, et al. Imaging and 2-year clinical outcomes of thin strut sirolimus-eluting bioresorbable vascular scaffold: The MeRes-1 extend trial. Catheter Cardiovasc Interv. 2021;98(6):1102-10. doi: 10.1002/ccd.29396.
42. Tenekecioglu E, Serruys PW, Onuma Y, Costa R, Chamié D, Sotomi Y, Yet al. Randomized Comparison of Absorb Bioresorbable Vascular Scaffold and Mirage Microfiber Sirolimus-Eluting Scaffold Using Multimodality Imaging. JACC Cardiovasc Interv. 2017;10(11):1115-30. doi: 10.1016/j.jcin.2017.03.015.
43. Chieffo A, Khawaja SA, Latib A, Vesga B, Moncada M, Delgado JA, et al. First-in-human evaluation of a novel sirolimus-eluting ultra-high molecular weight APTITUDE bioresorbable scaffold: 9- and 24-month imaging and clinical results of the RENASCENT II trial. EuroIntervention. 2020;16(2):e133-e140. doi: 10.4244/EIJ-D-19-00600.
44. Ferrone M, Chieffo A, Khawaja SA, Moncada M, Colombo A, Latib A, et al. RENASCENT III: First in Human Evaluation of the Novel Thin Strut MAGNITUDE Sirolimus-Eluting Ultra-High Molecular Weight MAGNITUDE Bioresorbable Scaffold: 9-Month Imaging and 2-Year Clinical Results. Circ Cardiovasc Interv. 2021;14(5):e010013. doi: 10.1161/CIRCINTERVENTIONS.120.010013.
45. Zhang YJ, Wang XZ, Fu G, Jing QM, Wang G, Jin CY, et al. Clinical and multimodality imaging results at 6 months of a bioresorbable sirolimus-eluting scaffold for patients with single de novo coronary artery lesions: the NeoVas first-in-man trial. EuroIntervention. 2016;12(10):1279-87. doi: 10.4244/EIJV12I10A209.
46. Han Y, Xu B, Fu G, Wang X, Xu K, Jin C, et al. A Randomized Trial Comparing the NeoVas Sirolimus-Eluting Bioresorbable Scaffold and
Metallic Everolimus-Eluting Stents. JACC Cardiovasc Interv. 2018;11(3):260-72. doi: 10.1016/j.jcin.2017.09.037.
47. Wu Y, Shen L, Ge L, Wang Q, Qian J, Zhang F, et al. Six-month outcomes of the XINSORB bioresorbable sirolimus-eluting scaffold in treating single de novo lesions in human coronary artery. Catheter Cardiovasc Interv. 2016;87 Suppl 1:630-7. doi: 10.1002/ccd.26404.
48. Ge J. XINSORB: a randomized trial of a bioresorbable scaffold versus a metallic DES in patients with coronary artery disease. Available from: https://www.tctmd.com/slide/xinsorb-randomized-trial-bioresorbable-scaffold-vs-metallic-des-patients-coronary-artery (accessed June 2022).
49. Ge J. The PLLA-based Xinsorb. Available from: https://www.tctmd.com/slide/plla-based-xinsorb (accessed June 2022).
50. Xu B, Guan C, Gao R. A first-in-man study of the firesorb sirolimus target eluting bioresorbable vascular scaffold in patients with coronary artery disease (FUTURE-I): one-year clinical and imaging outcomes. J. Am. Coll. Cardiol. 2017;70 (18_Supplement):B6. doi: 10.1016/j.jacc.2017.09.070.
51. Song L, Guan C, Sun Z, Gao RL, Xu B. A First-in-Man Study of the Firesorb Sirolimus Target-Eluting Bioresorbable Vascular Scaffold in Patients With Coronary Artery Disease (FUTURE-I): 3-Year Clinical and Imaging Outcomes. J Am Coll Cardiol. 2019;74(13 Supplement):B170. doi: 10.1016/j.jacc.2019.08.227.
52. Lin WJ, Zhang DY, Zhang G, Sun HT, Qi HP, Chen LP, et al. Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold. Mater Des. 2016;91:72–9. doi: 10.1016/j.matdes.2015.11.045.
53. Qi Y, Qi H, He Y, Lin W, Li P, Qin L, et al. Strategy of Metal-Polymer Composite Stent To Accelerate Biodegradation of Iron-Based Biomaterials. ACS Appl Mater Interfaces. 2018;10(1):182-92. doi: 10.1021/acsami.7b15206.
54. Sakamoto A, Jinnouchi H, Torii S, Virmani R, Finn AV. Understanding the Impact of Stent and Scaffold Material and Strut Design on Coronary Artery Thrombosis from the Basic and Clinical Points of View. Bioengineering (Basel). 2018;5(3):71. doi: 10.3390/bioengineering5030071.
55. Yahagi K, Yang Y, Torii S, Mensah J, White RM, Mathieu M, et al. Comparison of a Drug-Free Early Programmed Dismantling PDLLA Bioresorbable Scaffold and a Metallic Stent in a Porcine Coronary Artery Model at 3-Year Follow-Up. J Am Heart Assoc. 2017;6(6):e005693. doi: 10.1161/JAHA.117.005693.
56. Forrestal B, Case BC, Yerasi C, Musallam A, Chezar-Azerrad C, Waksman R. Bioresorbable Scaffolds: Current Technology and Future Perspectives. Rambam Maimonides Med J. 2020;11(2):e0016. doi: 10.5041/RMMJ.10402.
57. Bangalore S, Bezerra HG, Rizik DG, Armstrong EJ, Samuels B, Naidu SS, et al. The State of the Absorb Bioresorbable Scaffold: Consensus From an Expert Panel. JACC Cardiovasc Interv. 2017;10(23):2349-59. doi: 10.1016/j.jcin.2017.09.041.
58. Puricel S, Cuculi F, Weissner M, Schmermund A, Jamshidi P, Nyffenegger T, et al. Bioresorbable Coronary Scaffold Thrombosis: Multicenter Comprehensive Analysis of Clinical Presentation, Mechanisms, and Predictors. J Am Coll Cardiol. 2016:67(8):921-31. doi: 10.1016/j.jacc.2015.12.019: 26916481.
59. Ellis SG, Gori T, Serruys PW, Nef H, Steffenino G, Brugaletta S, et al. Clinical, Angiographic, and Procedural Correlates of Very Late Absorb Scaffold Thrombosis: Multistudy Registry Results. JACC Cardiovasc Interv. 2018;11(7):638-44. doi: 10.1016/j.jcin.2017.11.042.
60. Ellis SG, Steffenino G, Kereiakes DJ, Stone GW, van Geuns RJ, Abizaid A, et al. Clinical, Angiographic, and Procedural Correlates of Acute, Subacute, and Late Absorb Scaffold Thrombosis. JACC Cardiovasc Interv. 2017;10(18):1809-15. doi: 10.1016/j.jcin.2017.06.067.
61. Gori T, Wiebe J, Capodanno D, Latib A, Lesiak M, Pyxaras SA, et al. Early and midterm outcomes of bioresorbable vascular scaffolds for ostial coronary lesions: insights from the GHOST-EU registry. EuroIntervention. 2016;12(5):e550-6. doi: 10.4244/EIJY15M09_10.
62. Gori T, Guagliumi G, Münzel T. Absorb bioresorbable scaffold implantation for the treatment of an ostial chronic total occlusion. Int J Cardiol. 2014;172(2):e377-8. doi: 10.1016/j.ijcard.2013.12.293.
63. Moscarella E, Ielasi A, Granata F, Coscarelli S, Stabile E, Latib A, et al. Long-Term Clinical Outcomes After Bioresorbable Vascular Scaffold Implantation for the Treatment of Coronary In-Stent Restenosis: A Multicenter Italian Experience. Circ Cardiovasc Interv. 2016;9(4):e003148. doi: 10.1161/CIRCINTERVENTIONS.115.003148.
64. Sabaté M, Alfonso F, Cequier A, Romaní S, Bordes P, Serra A, et al. Magnesium-Based Resorbable Scaffold Versus Permanent Metallic Sirolimus-Eluting Stent in Patients With ST-Segment Elevation Myocardial Infarction: The MAGSTEMI Randomized Clinical Trial. Circulation. 2019;140(23):1904-16. doi: 10.1161/CIRCULATIONAHA.119.043467.
65. Brugaletta S, Gori T, Tousek P, Gomez-Lara J, Pinar E, Ortega-Paz L, et al. Bioresorbable vascular scaffolds versus everolimus-eluting metallic stents in patients with ST-segment elevation myocardial infarction: 5-year results of the BVS-EXAMINATION study. EuroIntervention. 2020;15(16):1436-43. doi: 10.4244/EIJ-D-19-00773.
66. Wlodarczak A, Lanocha M, Jastrzebski A, Pecherzewski M, Szudrowicz M, Jastrzebski W, Nawrot J, Lesiak M. Early outcome of magnesium bioresorbable scaffold implantation in acute coronary syndrome-the initial
report from the Magmaris-ACS registry. Catheter Cardiovasc Interv. 2019;93(5):E287-E292. doi: 10.1002/ccd.28036.
67. Valgimigli M, Bueno H, Byrne RA, Collet JP, Costa F, Jeppsson A, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2018;39(3):213-60. doi: 10.1093/eurheartj/ehx419.


Submitted date:
06/05/2022

Reviewed date:
08/16/2022

Accepted date:
08/24/2022

Publication date:
08/31/2022

630ef82fa953955d023fd724 iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections