Iberoamerican Journal of Medicine
https://iberoamjmed.com/article/doi/10.53986/ibjm.2022.0032
Iberoamerican Journal of Medicine
Review

Progressive trends in prenatal genetic screening

Tendencias progresivas en el cribado genético prenatal

Kirolos Eskandar

Downloads: 13
Views: 165

Abstract

According to the global report on birth defects in 2021, it is estimated that 8 million children are born with birth defects of genetic origin annually. These birth defects vary in their degree of severity; where some types are mild and do not require treatment but others may necessitate lifelong medications or even cause instant death just after birth. That is why prenatal screening is doubtless necessary to detect such genetic defects before birth aiming to drop the tragedy of these children off.
Recently, this approach has been developing towards non-invasive techniques that reduce the risk of miscarriage, which was common in the old-fashioned invasive ones. Non-invasive Prenatal Tests (NIPTs) like Chromosomal Microarray Analysis (CMA) and cell-free fetal DNA (cffDNA) caused a breakthrough in the screening methods of chromosomal aneuploidies. Thanks to their benefits, NIPTs are considered a fundamental clinical approach for pregnant women’ screening in multiple countries.
Thence, this paper gives prominence to the recentness of NIPTs along with each’s assets, liabilities, and prospective recommendations. In addition, it would demonstrate the importance of modern molecular technologies like next-generation sequencing (NGS) which are enforced for the appliance of NIPTs.

Keywords

Non-invasive prenatal tests; Cell free fetal DNA; Chromosomal microarray; Chorionic villus sampling; Maternal plasma; Fetal nucleated red blood cells; Next generation sequencing

Resumen

Según el informe mundial sobre anomalías congénitas de 2021, se estima que anualmente nacen 8 millones de niños con anomalías congénitas de origen genético. Estos defectos de nacimiento varían en su grado de severidad; donde algunos tipos son leves y no requieren tratamiento, pero otros pueden necesitar medicamentos de por vida o incluso causar la muerte instantánea justo después del nacimiento. Por eso es sin duda necesario el cribado prenatal para detectar tales defectos genéticos antes del nacimiento con el fin de acabar con la tragedia de estos niños.
Recientemente, este enfoque se ha ido desarrollando hacia técnicas no invasivas que reducen el riesgo de aborto espontáneo, que era común en las antiguas invasivas. Las pruebas prenatales no invasivas (NIPT) como el análisis de micromatrices cromosómicas (CMA) y el ADN fetal libre de células (cffDNA) provocaron un gran avance en los métodos de detección de aneuploidías cromosómicas. Gracias a sus beneficios, las NIPT se consideran un enfoque clínico fundamental para la detección de mujeres embarazadas en múltiples países.
Por lo tanto, este documento destaca la actualidad de los NIPT junto con los activos, pasivos y recomendaciones prospectivas de cada uno. Además, demostraría la importancia de las tecnologías moleculares modernas, como la secuenciación de próxima generación (NGS), que se aplican para la aplicación de NIPT.

Palabras clave

Pruebas prenatales no invasivas; AND fetal libre de células; Micromatrices cromosómicas; Muestreo de vellosidades coriónicas; Plasma materno; Glóbulos rojos fetales nucleados; Secuenciación de última generación

References

1. Bringman JJ. Invasive prenatal genetic testing: A Catholic healthcare provider's perspective. Linacre Q. 2014;81(4):302-13. doi: 10.1179/2050854914Y.0000000022.
2. Prochownick, L. Nachtrag zu dem Aufsatze: Beiträge zur Lehre vom Fruchtwasser und seiner Entstehung. Arch. Gynak. 1877;11:561-3. doi: 10.1007/BF01765204.
3. Scott FP, Menezes M, Palma-Dias R, Nisbet D, Schluter P, da Silva Costa F, et al. Factors affecting cell-free DNA fetal fraction and the consequences for test accuracy. J Matern Fetal Neonatal Med. 2018;31(14):1865-72. doi: 10.1080/14767058.2017.1330881.
4. Wapner RJ, Babiarz JE, Levy B, Stosic M, Zimmermann B, Sigurjonsson S, et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes. Am J Obstet Gynecol. 2015;212(3):332.e1-9. doi: 10.1016/j.ajog.2014.11.041.
5. Petersen AK, Cheung SW, Smith JL, Bi W, Ward PA, Peacock S, et al. Positive predictive value estimates for cell-free noninvasive prenatal screening
from data of a large referral genetic diagnostic laboratory. Am J Obstet Gynecol. 2017;217(6):691.e1-691.e6. doi: 10.1016/j.ajog.2017.10.005.
6. Shaffer BL, Norton ME. Cell-Free DNA Screening for Aneuploidy and Microdeletion Syndromes. Obstet Gynecol Clin North Am. 2018;45(1):13-26. doi: 10.1016/j.ogc.2017.10.001.
7. Jenkins LA, Deans ZC, Lewis C, Allen S. Delivering an accredited non-invasive prenatal diagnosis service for monogenic disorders and recommendations for best practice. Prenat Diagn. 2018;38(1):44-51. doi: 10.1002/pd.5197.
8. Guissart C, Debant V, Desgeorges M, Bareil C, Raynal C, Toga C, et al. Non-invasive prenatal diagnosis of monogenic disorders: an optimized protocol using MEMO qPCR with miniSTR as internal control. Clin Chem Lab Med. 2015;53(2):205-15. doi: 10.1515/cclm-2014-0501.
9. Yu SC, Chan KC, Zheng YW, Jiang P, Liao GJ, Sun H, et al. Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing. Proc Natl Acad Sci U S A. 2014;111(23):8583-8. doi: 10.1073/pnas.1406103111.
10. Chitty LS, Lo YM. Noninvasive Prenatal Screening for Genetic Diseases Using Massively Parallel Sequencing of Maternal Plasma DNA. Cold Spring Harb Perspect Med. 2015;5(9):a023085. doi: 10.1101/cshperspect.a023085.
11. Zhao C, Tynan J, Ehrich M, Hannum G, McCullough R, Saldivar JS, et al. Detection of fetal subchromosomal abnormalities by sequencing circulating cell-free DNA from maternal plasma. Clin Chem. 2015;61(4):608-16. doi: 10.1373/clinchem.2014.233312.
12. Sun K, Chan KC, Hudecova I, Chiu RW, Lo YM, Jiang P. COFFEE: control-free noninvasive fetal chromosomal examination using maternal plasma DNA. Prenat Diagn. 2017;37(4):336-40. doi: 10.1002/pd.5016.
13. Straver R, Oudejans CB, Sistermans EA, Reinders MJ. Calculating the fetal fraction for noninvasive prenatal testing based on genome-wide nucleosome profiles. Prenat Diagn. 2016;36(7):614-21. doi: 10.1002/pd.4816.
14. Rava RP, Srinivasan A, Sehnert AJ, Bianchi DW. Circulating fetal cell-free DNA fractions differ in autosomal aneuploidies and monosomy X. Clin Chem. 2014;60(1):243-50. doi: 10.1373/clinchem.2013.207951.
15. Jiang P, Peng X, Su X, Sun K, Yu SCY, Chu WI, et al. FetalQuantSD: accurate quantification of fetal DNA fraction by shallow-depth sequencing of maternal plasma DNA. NPJ Genom Med. 2016;1:16013. doi: 10.1038/npjgenmed.2016.13.
16. Koukoura O, Sifakis S, Spandidos DA. DNA methylation in the human placenta and fetal growth (review). Mol Med Rep. 2012;5(4):883-9. doi: 10.3892/mmr.2012.763.
17. Lo YMD. Noninvasive prenatal testing complicated by maternal malignancy: new tools for a complex problem. NPJ Genom Med. 2016;1:15002. doi: 10.1038/npjgenmed.2015.2.
18. Sehnert AJ, Rhees B, Comstock D, de Feo E, Heilek G, Burke J, et al. Optimal detection of fetal chromosomal abnormalities by massively parallel DNA sequencing of cell-free fetal DNA from maternal blood. Clin Chem. 2011;57(7):1042-9. doi: 10.1373/clinchem.2011.165910.
19. Vossaert L, Wang Q, Salman R, Zhuo X, Qu C, Henke D, et al. Reliable detection of subchromosomal deletions and duplications using cell-based noninvasive prenatal testing. Prenat Diagn. 2018;38(13):1069-78. doi: 10.1002/pd.5377.
20. Akolekar R, Beta J, Picciarelli G, Ogilvie C, D'Antonio F. Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2015;45(1):16-26. doi: 10.1002/uog.14636.
21. Papageorgiou EA, Karagrigoriou A, Tsaliki E, Velissariou V, Carter NP, Patsalis PC. Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med. 2011;17(4):510-3. doi: 10.1038/nm.2312.
22. Christopoulou G, Papageorgiou EA, Patsalis PC, Velissariou V. Comparison of next generation sequencing-based and methylated DNA immunoprecipitation-based approaches for fetal aneuploidy non-invasive prenatal testing. World J Med Genet. 2015;5(2): 23-7. doi: 10.5496/wjmg.v5.i2.23.
23. Ashoor G, Syngelaki A, Wagner M, Birdir C, Nicolaides KH. Chromosome-selective sequencing of maternal plasma cell-free DNA for first-trimester detection of trisomy 21 and trisomy 18. Am J Obstet Gynecol. 2012;206(4):322.e1-5. doi: 10.1016/j.ajog.2012.01.029.
24. Nicolaides KH, Syngelaki A, Ashoor G, Birdir C, Touzet G. Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am J Obstet Gynecol. 2012;207(5):374.e1-6. doi: 10.1016/j.ajog.2012.08.033.
25. Pergament E, Cuckle H, Zimmermann B, Banjevic M, Sigurjonsson S, Ryan A, et al. Single-nucleotide polymorphism-based noninvasive prenatal screening in a high-risk and low-risk cohort. Obstet Gynecol. 2014;124(2 Pt 1):210-218. doi: 10.1097/AOG.0000000000000363.
26. Verweij EJ, Jacobsson B, van Scheltema PA, de Boer MA, Hoffer MJ, Hollemon D, et al. European non-invasive trisomy evaluation (EU-NITE) study: a multicenter prospective cohort study for non-invasive fetal trisomy 21 testing. Prenat Diagn. 2013;33(10):996-1001. doi: 10.1002/pd.4182.
27. Dan S, Wang W, Ren J, Li Y, Hu H, Xu Z, et al. Clinical application of massively parallel sequencing-based prenatal noninvasive fetal trisomy test for trisomies 21 and 18 in 11,105 pregnancies with mixed risk factors. Prenat Diagn. 2012;32(13):1225-32. doi: 10.1002/pd.4002.
28. Cheung SW, Patel A, Leung TY. Accurate description of DNA-based noninvasive prenatal screening. N Engl J Med. 2015;372(17):1675-7. doi: 10.1056/NEJMc1412222.
29. Curnow KJ, Wilkins-Haug L, Ryan A, Kırkızlar E, Stosic M, Hall MP, et al. Detection of triploid, molar, and vanishing twin pregnancies by a single-nucleotide polymorphism-based noninvasive prenatal test. Am J Obstet Gynecol. 2015;212(1):79.e1-9. doi: 10.1016/j.ajog.2014.10.012.
30. Taglauer ES, Wilkins-Haug L, Bianchi DW. Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta. 2014;35 Suppl(Suppl):S64-8. doi: 10.1016/j.placenta.2013.11.014.
31. Rava RP, Srinivasan A, Sehnert AJ, Bianchi DW. Circulating fetal cell-free DNA fractions differ in autosomal aneuploidies and monosomy X. Clin Chem. 2014;60(1):243-50. doi: 10.1373/clinchem.2013.207951.
32. Osborne CM, Hardisty E, Devers P, Kaiser-Rogers K, Hayden MA, Goodnight W, et al. Discordant noninvasive prenatal testing results in a
patient subsequently diagnosed with metastatic disease. Prenat Diagn. 2013;33(6):609-11. doi: 10.1002/pd.4100.
33. McCullough RM, Almasri EA, Guan X, Geis JA, Hicks SC, Mazloom AR, et al. Non-invasive prenatal chromosomal aneuploidy testing--clinical experience: 100,000 clinical samples. PLoS One. 2014 7;9(10):e109173. doi: 10.1371/journal.pone.0109173.
34. Vora NL, O'Brien BM. Noninvasive prenatal testing for microdeletion syndromes and expanded trisomies: proceed with caution. Obstet Gynecol. 2014;123(5):1097-9. doi: 10.1097/AOG.0000000000000237.
35. Hill M, Twiss P, Verhoef TI, Drury S, McKay F, Mason S, et al. Non-invasive prenatal diagnosis for cystic fibrosis: detection of paternal mutations, exploration of patient preferences and cost analysis. Prenat Diagn. 2015;35(10):950-8. doi: 10.1002/pd.4585.
36. González-González MC, García-Hoyos M, Trujillo MJ, Rodríguez de Alba M, Lorda-Sánchez I, Díaz-Recasens J, et al. Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma. Prenat Diagn. 2002;22(10):946-8. doi: 10.1002/pd.439.
37. Geifman-Holtzman O, Grotegut CA, Gaughan JP. Diagnostic accuracy of noninvasive fetal Rh genotyping from maternal blood--a meta-analysis. Am J Obstet Gynecol. 2006;195(4):1163-73. doi: 10.1016/j.ajog.2006.07.033.
38. Mackie FL, Hemming K, Allen S, Morris RK, Kilby MD. The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: a systematic review and bivariate meta-analysis. BJOG. 2017 ;124(1):32-46. doi: 10.1111/1471-0528.14050.


Submitted date:
07/22/2022

Reviewed date:
08/14/2022

Accepted date:
08/21/2022

Publication date:
08/21/2022

63021c88a9539546a204d104 iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections