Iberoamerican Journal of Medicine
https://iberoamjmed.com/article/doi/10.53986/ibjm.2022.0008
Iberoamerican Journal of Medicine
Review

Reducing bacterial antibiotic resistance by targeting bacterial metabolic pathways and disrupting RND efflux pump activity

Reducir la resistencia a los antibióticos bacterianos al dirigirse a las vías metabólicas bacterianas e interrumpir la actividad de la bomba de salida de RND

Tatiana Hillman

Downloads: 2
Views: 498

Abstract

Antibiotic resistance is a significant issue for the medical community, worldwide. Many bacteria develop drug resistance by utilizing multidrug resistant or MDR efflux pumps that can export antibiotics from bacterial cells. Antibiotics are expelled from bacteria by efflux pumps a part of the resistance nodulation division (RND) family. Types of RND efflux pumps include the AcrAB-TolC tripartite protein pump. There are an excessive number of antibiotic compounds that have been discovered; however, only a few antibiotics are effective against MDR bacteria. Many bacteria become drug resistant when sharing genes that encode MDR efflux pump expression. MDR efflux pump encoding genes are incorporated into plasmids and then shared among bacteria. As a consequence, advancements in genetic engineering can sufficiently target and edit pathogenic bacterial genomes for perturbing drug resistance mechanisms. In this perspective and review, support will be provided for utilizing genetic modifications as an antimicrobial approach and tool that may effectively combat bacterial MDR. Ayhan et al. found that deleting acrB, acrA, and tolC increased the levels of antibiotic sensitivity in Escherichia coli. Researchers also found that glucose, glutamate, and fructose all induced the absorption of antibiotics by upregulating the gene expression of maeA and maeB that is a part of the MAL-pyruvate pathway. Therefore, the current perspective and review will discuss the potential efficacy of reducing antibiotic resistance by inhibiting genes that encode efflux protein pump expression while simultaneously upregulating metabolic genes for increased antibiotic uptake.

Keywords

Efflux pump; Antibiotic resistance; Bacterial metabolic pathways

Resumen

La resistencia a los antibióticos es un problema importante para la comunidad médica en todo el mundo. Muchas bacterias desarrollan resistencia a los fármacos mediante el uso de bombas de eflujo MDR o resistentes a múltiples fármacos que pueden exportar antibióticos de las células bacterianas. Los antibióticos se expulsan de las bacterias mediante bombas de eflujo que forman parte de la familia de la división de nodulación de resistencia (RND). Los tipos de bombas de eflujo RND incluyen la bomba de proteínas tripartita AcrAB-TolC. Hay un número excesivo de compuestos antibióticos que se han descubierto; sin embargo, solo unos pocos antibióticos son eficaces contra la bacteria MDR. Muchas bacterias se vuelven resistentes a los fármacos cuando comparten genes que codifican la expresión de la bomba de eflujo MDR. Los genes que codifican la bomba de eflujo MDR se incorporan a los plásmidos y luego se comparten entre las bacterias. Como consecuencia, los avances en la ingeniería genética pueden apuntar y editar suficientemente los genomas bacterianos patógenos para perturbar los mecanismos de resistencia a los medicamentos. En esta perspectiva y revisión, se brindará apoyo para utilizar modificaciones genéticas como un enfoque y una herramienta antimicrobianos que pueden combatir eficazmente la MDR bacteriana. Ayhan y col. encontraron que la eliminación de acrB, acrA y tolC aumentaba los niveles de sensibilidad a los antibióticos en Escherichia coli. Los investigadores también encontraron que la glucosa, el glutamato y la fructosa inducían la absorción de antibióticos al regular al alza la expresión génica de maeA y maeB que es parte de la vía MAL-piruvato. Por lo tanto, la perspectiva actual y la revisión discutirán la eficacia potencial de reducir la resistencia a los antibióticos al inhibir los genes que codifican la expresión de la bomba de proteínas de salida y, al mismo tiempo, regular al alza los genes metabólicos para una mayor absorción de antibióticos.

Palabras clave

Bomba de flujo; Resistencia antibiótica; Vías metabólicas bacterianas

References

1. Osman K, Badr J, Al-Maary KS, Moussa IM, Hessain AM, Girah ZM, et al. Prevalence of the Antibiotic Resistance Genes in Coagulase-Positive-and Negative-Staphylococcus in Chicken Meat Retailed to Consumers. Front Microbiol. 2016;7:1846. doi: 10.3389/fmicb.2016.01846.
2. Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol. 2015;6:587. doi: 10.3389/fmicb.2015.00587.
3. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis. 2021;72(7):e169-e183. doi: 10.1093/cid/ciaa1478.
4. Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416-22. doi: 10.1016/j.cmi.2015.12.002.
5. Eichenberger EM, Thaden JT. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics (Basel). 2019;8(2):37. doi: 10.3390/antibiotics8020037.
6. Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020;25(6):1340. doi: 10.3390/molecules25061340.
7. Shi X, Chen M, Yu Z, Bell JM, Wang H, Forrester I, et al. In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nat Commun. 2019;10(1):2635. doi: 10.1038/s41467-019-10512-6.
8. Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol. 2003;185(19):5657-64. doi: 10.1128/JB.185.19.5657-5664.2003.
9. Thomas-Lopez D, Carrilero L, Matrat S, Montero N, Claverol S, Filipovic MR, et al. H2S mediates interbacterial communication through the air reverting intrinsic antibiotic resistance. bioRxiv. 2017:202804. doi: 10.1101/202804.
10. Crabbé A, Ostyn L, Staelens S, Rigauts C, Risseeuw M, Dhaenens M, et al. Host metabolites stimulate the bacterial proton motive force to enhance the activity of aminoglycoside antibiotics. PLoS Pathog. 2019;15(4):e1007697. doi: 10.1371/journal.ppat.1007697.
11. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78:119-46. doi: 10.1146/annurev.biochem.78.082907.145923.
12. Headd B, Bradford SA. Physicochemical Factors That Favor Conjugation of an Antibiotic Resistant Plasmid in Non-growing Bacterial Cultures in the Absence and Presence of Antibiotics. Front Microbiol. 2018;9:2122. doi: 10.3389/fmicb.2018.02122.
13. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016;4(2):10.1128/microbiolspec.VMBF-0016-2015. doi: 10.1128/microbiolspec.VMBF-0016-2015.
14. Verstraeten N, Knapen W, Fauvart M, Michiels J. A Historical Perspective on Bacterial Persistence. Methods Mol Biol. 2016;1333:3-13. doi: 10.1007/978-1-4939-2854-5_1.
15. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277-83.
16. Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR, Mather AE, et al. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet. 2014;10(8):e1004547. doi: 10.1371/journal.pgen.1004547.
17. Li Y, Metcalf BJ, Chochua S, Li Z, Gertz RE Jr, Walker H, et al. Validation of β-lactam minimum inhibitory concentration predictions for pneumococcal isolates with newly encountered penicillin binding protein (PBP) sequences. BMC Genomics. 2017;18(1):621. doi: 10.1186/s12864-017-4017-7.
18. Pimenta F, Gertz RE Jr, Park SH, Kim E, Moura I, Milucky J, et al. Streptococcus infantis, Streptococcus mitis, and Streptococcus oralis Strains With Highly Similar cps5 Loci and Antigenic Relatedness to Serotype 5 Pneumococci. Front Microbiol. 2019;9:3199. doi: 10.3389/fmicb.2018.03199.
19. Deng X, Allan-Blitz LT, Klausner JD. Using the genetic characteristics of Neisseria gonorrhoeae strains with decreased susceptibility to cefixime to develop a molecular assay to predict cefixime susceptibility. Sex Health. 2019;16(5):488-99. doi: 10.1071/SH18227.
20. Simonte FM, Dötsch A, Galego L, Arraiano C, Gescher J. Investigation on the anaerobic propionate degradation by Escherichia coli K12. Mol Microbiol. 2017;103(1):55-66. doi: 10.1111/mmi.13541.
21. Mahmood HY, Jamshidi S, Sutton JM, Rahman KM. Current Advances in Developing Inhibitors of Bacterial Multidrug Efflux Pumps. Curr Med Chem. 2016;23(10):1062-81. doi: 10.2174/0929867323666160304150522.
22. Stavri M, Piddock LJ, Gibbons S. Bacterial efflux pump inhibitors from natural sources. J Antimicrob Chemother. 2007;59(6):1247-60. doi: 10.1093/jac/dkl460.
23. Aghayan SS, Kalalian Mogadam H, Fazli M, Darban-Sarokhalil D, Khoramrooz SS, Jabalameli F, et al. The Effects of Berberine and Palmatine on Efflux Pumps Inhibition with Different Gene Patterns in Pseudomonas aeruginosa Isolated from Burn Infections. Avicenna J Med Biotechnol. 2017;9(1):2-7.
24. Barreto HM, Coelho KM, Ferreira JH, Dos Santos BH, de Abreu AP, Coutinho HD, et al. Enhancement of the antibiotic activity of aminoglycosides by extracts from Anadenanthera colubrine (Vell.) Brenan var. cebil against multi-drug resistant bacteria. Nat Prod Res. 2016;30(11):1289-92. doi: 10.1080/14786419.2015.1049177.
25. Bohnert JA, Schuster S, Kern WV, Karcz T, Olejarz A, Kaczor A, et al. Novel Piperazine Arylideneimidazolones Inhibit the AcrAB-TolC Pump in Escherichia coli and Simultaneously Act as Fluorescent Membrane Probes in a Combined Real-Time Influx and Efflux Assay. Antimicrob Agents Chemother. 2016;60(4):1974-83. doi: 10.1128/AAC.01995-15.
26. Amaral L, Spengler G, Martins A, Armada A, Handzlik J, Kiec-Kononowicz K, et al. Inhibitors of bacterial efflux pumps that also inhibit efflux pumps of cancer cells. Anticancer Res. 2012;32(7):2947-57.
27. Bag A, Chattopadhyay RR. Efflux-pump inhibitory activity of a gallotannin from Terminalia chebula fruit against multidrug-resistant uropathogenic Escherichia coli. Nat Prod Res. 2014;28(16):1280-3. doi: 10.1080/14786419.2014.895729.
28. Chovanová R, Mezovská J, Vaverková Š, Mikulášová M. The inhibition the Tet(K) efflux pump of tetracycline resistant Staphylococcus epidermidis by essential oils from three Salvia species. Lett Appl Microbiol. 2015;61(1):58-62. doi: 10.1111/lam.12424.
29. Opperman TJ, Kwasny SM, Kim HS, Nguyen ST, Houseweart C, D'Souza S, et al. Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob Agents Chemother. 2014;58(2):722-33. doi: 10.1128/AAC.01866-13.
30. Bhattacharyya T, Sharma A, Akhter J, Pathania R. The small molecule IITR08027 restores the antibacterial activity of fluoroquinolones against multidrug-resistant Acinetobacter baumannii by efflux inhibition. Int J Antimicrob Agents. 2017;50(2):219-26. doi: 10.1016/j.ijantimicag.2017.03.005.
31. Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53(10):1565-74. doi: 10.1021/bi5000564.
32. Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg Infect Control. 2017;12:Doc05. doi: 10.3205/dgkh000290.
33. Ayhan DH, Tamer YT, Akbar M, Bailey SM, Wong M, Daly SM, et al. Sequence-Specific Targeting of Bacterial Resistance Genes Increases
Antibiotic Efficacy. PLoS Biol. 2016;14(9):e1002552. doi: 10.1371/journal.pbio.1002552.
34. Wang-Kan X, Blair JMA, Chirullo B, Betts J, La Ragione RM, Ivens A, et al. Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium. mBio. 2017;8(4):e00968-17. doi: 10.1128/mBio.00968-17.
35. Wozniak CE, Lin Z, Schmidt EW, Hughes KT, Liou TG. Thailandamide, a Fatty Acid Synthesis Antibiotic That Is Coexpressed with a Resistant Target Gene. Antimicrob Agents Chemother. 2018;62(9):e00463-18. doi: 10.1128/AAC.00463-18.
36. Wu Y, Seyedsayamdost MR. The Polyene Natural Product Thailandamide A Inhibits Fatty Acid Biosynthesis in Gram-Positive and Gram-Negative Bacteria. Biochemistry. 2018;57(29):4247-51. doi: 10.1021/acs.biochem.8b00678.
37. Evans AL. The Distinctive Regulatory Mechanisms of Bacterial Acetyl-CoA Carboxylase. LSU Doctoral Dissertations. 4701. 2018. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/4701.
38. Kénanian G, Morvan C, Weckel A, Pathania A, Anba-Mondoloni J, Halpern D, et al. Permissive Fatty Acid Incorporation Promotes Staphylococcal Adaptation to FASII Antibiotics in Host Environments. Cell Rep. 2019;29(12):3974-82.e4. doi: 10.1016/j.celrep.2019.11.071.
39. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13(5):310-7. doi: 10.1038/nrmicro3439.
40. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ. 2013;447:345-60. doi: 10.1016/j.scitotenv.2013.01.032.
41. Martínez JL, Coque TM, Baquero F. What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol. 2015;13(2):116-23. doi: 10.1038/nrmicro3399.
42. Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 2015;9(6):1269-79. doi: 10.1038/ismej.2014.226.
43. Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, et al. Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect. 2013;121(9):993-1001. doi: 10.1289/ehp.1206316.
44. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8(4):251-9. doi: 10.1038/nrmicro2312.
45. Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015;69:234-42. doi: 10.1016/j.watres.2014.11.021.
46. Pruden A, Larsson DG, Amézquita A, Collignon P, Brandt KK, Graham DW, et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect. 2013;121(8):878-85. doi: 10.1289/ehp.1206446.
47. Czekalski N, Gascón Díez E, Bürgmann H. Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME J. 2014;8(7):1381-90. doi: 10.1038/ismej.2014.8.
48. Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 2015;9(11):2490-502. doi: 10.1038/ismej.2015.59.
49. Cunningham CJ , Kuyukina MS , Ivshina IB , Konev AI , Peshkur TA , Knapp CW . Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. Environ Sci Process Impacts. 2020;22(5):1110-24. doi: 10.1039/c9em00606k.
50. Chokshi A, Sifri Z, Cennimo D, Horng H. Global Contributors to Antibiotic Resistance. J Glob Infect Dis. 2019;11(1):36-42. doi: 10.4103/jgid.jgid_110_18.
51. Dong H, Chen Y, Wang J, Zhang Y, Zhang P, Li X, et al. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. J Hazard Mater. 2021;403:123961. doi: 10.1016/j.jhazmat.2020.123961.
52. Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41(3):276-301. doi: 10.1093/femsre/fux010.
53. Nolivos S, Cayron J, Dedieu A, Page A, Delolme F, Lesterlin C. Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer. Science. 2019;364(6442):778-82. doi: 10.1126/science.aav6390.
54. Ohneck EA, Zalucki YM, Johnson PJ, Dhulipala V, Golparian D, Unemo M, et al. A novel mechanism of high-level, broad-spectrum antibiotic resistance caused by a single base pair change in Neisseria gonorrhoeae. mBio. 2011;2(5):e00187-11. doi: 10.1128/mBio.00187-11.
55. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42-51. doi: 10.1038/nrmicro3380.
56. Belmans G, Liu E, Tsui J, Zhou B. AcrS is a potential repressor of acrA expression in Escherichia coli and its deletion confers increased kanamycin resistance in E. coli BW25113. J Exp Microbiol Immunol. 2016;20:12-7.
57. Emami M, Xu S, Chan T. AcrS is an Activator of acrD Expression in Escherichia coli K-12 Following Exposure to Sub-inhibitory Concentration of Kanamycin Pretreatment. J Exp Microbiol Immunol. 2014;18:7-11.
58. Sidhu K, Talbot M, Van Mil K, Verstraete M. Treatment with sub-inhibitory kanamycin induces adaptive resistance to aminoglycoside antibiotics via the AcrD multidrug efflux pump in Escherichia coli K-12. J Exp Microbiol Immunol. 2012;16:11-6.
59. Usui M, Nagai H, Hiki M, Tamura Y, Asai T. Effect of Antimicrobial Exposure on AcrAB Expression in Salmonella enterica Subspecies enterica Serovar Choleraesuis. Front Microbiol. 2013;4:53. doi: 10.3389/fmicb.2013.00053.
60. Besse S, Raff D, Thejomayen M, Ting P. Sub-inhibitory concentrations of kanamycin may induce expression of the aminoglycoside efflux pump acrD through the two-component systems CpxAR and BaeSR in Escherichia coli K-12. J Exp Microbiol Immunol. 2014;18:1-6.
61. Lee K, Lin Q, Low A, Luo L. Short-term Adaptive Resistance in E. coli K-12 is not dependent on acrD, acrA and tolC. J Exp Microbiol Immunol. 2013;17:8-13.
62. Chu W, Fallavollita A, Lau WB, Park JJ. BaeR, EvgA and CpxR differ-entially regulate the expression of acrD in Escherichia coli K-12 but increased acrD transcription alone does not demonstrate a substantial increase in adaptive re- sistance against kanamycin. J Exp Microbiol Immunol. 2013;17:99-103.
63. Alian S, Qazi U, Sou J. AcrA and TolC are important efflux components in the development of low level adaptive aminoglycoside resistance in Escherichia coli K-12 following sub-inhibitory kanamycin pre-treatment. J Exp Microbiol Immunol. 2013;17:1-7.
64. Kafilzadeh F, Farsimadan F. Investigating multidrug efflux pumps in relation to the antibiotic resistance pattern in Escherichia coli strains from patients in Iran. Biomed Res. 2016;27(4):1130-5.
65. Zhang CZ, Chang MX, Yang L, Liu YY, Chen PX, Jiang HX. Upregulation of AcrEF in Quinolone Resistance Development in Escherichia coli When AcrAB-TolC Function Is Impaired. Microb Drug Resist. 2018;24(1):18-23. doi: 10.1089/mdr.2016.0207.
66. Jabar RM, Hassoon AH. The expression of efflux pump AcrAB in MDR Klebsiella pneumoniae isolated from Iraqi patients. J Pharm Sci Res. 2019;11(2):423-8.
67. Krishnamoorthy G, Tikhonova EB, Zgurskaya HI. Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB. J Bacteriol. 2008;190(2):691-8. doi: 10.1128/JB.01276-07.
68. Rampioni G, Pillai CR, Longo F, Bondì R, Baldelli V, Messina M, et al. Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence. Sci Rep. 2017;7(1):11392. doi: 10.1038/s41598-017-11892-9.
69. Pérez-Varela M, Corral J, Aranda J, Barbé J. Roles of Efflux Pumps from Different Superfamilies in the Surface-Associated Motility and Virulence
of Acinetobacter baumannii ATCC 17978. Antimicrob Agents Chemother. 2019;63(3):e02190-18. doi: 10.1128/AAC.02190-18.
70. Nikaido H. Structure and mechanism of RND-type multidrug efflux pumps. Adv Enzymol Relat Areas Mol Biol. 2011;77:1-60. doi: 10.1002/9780470920541.ch1.
71. Fernando DM, Kumar A. Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence. Antibiotics (Basel). 2013;2(1):163-81. doi: 10.3390/antibiotics2010163.
72. Delmar JA, Su CC, Yu EW. Bacterial multidrug efflux transporters. Annu Rev Biophys. 2014;43:93-117. doi: 10.1146/annurev-biophys-051013-022855.
73. Leus IV, Weeks JW, Bonifay V, Smith L, Richardson S, Zgurskaya HI. Substrate Specificities and Efflux Efficiencies of RND Efflux Pumps of Acinetobacter baumannii. J Bacteriol. 2018;200(13):e00049-18. doi: 10.1128/JB.00049-18.
74. Puzari M, Chetia P. RND efflux pump mediated antibiotic resistance in Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa: a major issue worldwide. World J Microbiol Biotechnol. 2017;33(2):24. doi: 10.1007/s11274-016-2190-5.
75. Kuete V, Ngameni B, Tangmouo JG, Bolla JM, Alibert-Franco S, Ngadjui BT, et al. Efflux pumps are involved in the defense of Gram-negative bacteria against the natural products isobavachalcone and diospyrone. Antimicrob Agents Chemother. 2010;54(5):1749-52. doi: 10.1128/AAC.01533-09.
76. Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482-501. doi: 10.3934/microbiol.2018.3.482.
77. Trastoy R, Manso T, Fernández-García L, Blasco L, Ambroa A, Pérez Del Molino ML, et al. Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin Microbiol Rev. 2018;31(4):e00023-18. doi: 10.1128/CMR.00023-18.
78. Elkins CA, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol. 2002;184(23):6490-8. doi: 10.1128/JB.184.23.6490-6499.2002.
79. Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337-418. doi: 10.1128/CMR.00117-14.
80. Vergalli J, Atzori A, Pajovic J, Dumont E, Malloci G, Masi M, et al. The challenge of intracellular antibiotic accumulation, a function of fluoroquinolone influx versus bacterial efflux. Commun Biol. 2020;3(1):198. doi: 10.1038/s42003-020-0929-x.
81. Palmer M. Efflux of cytoplasmically acting antibiotics from gram-negative bacteria: periplasmic substrate capture by multicomponent efflux pumps inferred from their cooperative action with single-component transporters. J Bacteriol. 2003;185(17):5287-9. doi: 10.1128/JB.185.17.5287-5289.2003.
82. Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother. 2018;73(8):2003-20. doi: 10.1093/jac/dky042.
83. Lomovskaya O, Totrov M. Vacuuming the periplasm. J Bacteriol. 2005;187(6):1879-83. doi: 10.1128/JB.187.6.1879-1883.2005.
84. Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol. 2005;187(6):1923-9. doi: 10.1128/JB.187.6.1923-1929.2005.
85. Nichols WW. Modeling the Kinetics of the Permeation of Antibacterial Agents into Growing Bacteria and Its Interplay with Efflux. Antimicrob Agents Chemother. 2017;61(10):e02576-16. doi: 10.1128/AAC.02576-16.
86. Merdanovic M, Clausen T, Kaiser M, Huber R, Ehrmann M. Protein quality control in the bacterial periplasm. Annu Rev Microbiol. 2011;65:149-68. doi: 10.1146/annurev-micro-090110-102925.
87. Assadian O, Wehse K, Hübner NO, Koburger T, Bagel S, Jethon F, et al. Minimum inhibitory (MIC) and minimum microbicidal concentration (MMC) of polihexanide and triclosan against antibiotic sensitive and resistant Staphylococcus aureus and Escherichia coli strains. GMS Krankenhhyg Interdiszip. 2011;6(1):Doc06. doi: 10.3205/dgkh000163.
88. Zgurskaya HI, Walker JK, Parks JM, Rybenkov VV. Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors. Acc Chem Res. 2021;54(4):930-9. doi: 10.1021/acs.accounts.0c00843.
89. Meylan S, Porter CBM, Yang JH, Belenky P, Gutierrez A, Lobritz MA, et al. Carbon Sources Tune Antibiotic Susceptibility in Pseudomonas aeruginosa via Tricarboxylic Acid Cycle Control. Cell Chem Biol. 2017;24(2):195-206. doi: 10.1016/j.chembiol.2016.12.015.
90. Peng B, Su YB, Li H, Han Y, Guo C, Tian YM, et al. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab. 2015;21(2):249-62. doi: 10.1016/j.cmet.2015.01.008.
91. Baeva ME, Golin AP, Mysuria S, Suresh P. Plasmid-mediated overex-pression of AcrS may decrease kanamycin resistance in Escherichia coli. J Exp Microbiol Immunol. 2018;4:1-10.
92. Ahn S, Jung J, Jang IA, Madsen EL, Park W. Role of Glyoxylate Shunt in Oxidative Stress Response. J Biol Chem. 2016;291(22):11928-38. doi: 10.1074/jbc.M115.708149.
93. Lin X, Kang L, Li H, Peng X. Fluctuation of multiple metabolic pathways is required for Escherichia coli in response to chlortetracycline stress. Mol Biosyst. 2014;10(4):901-8. doi: 10.1039/c3mb70522f.
94. Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 2011;473(7346):216-20. doi: 10.1038/nature10069.
95. Cheng ZX, Yang MJ, Peng B, Peng XX, Lin XM, Li H. The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus. J Proteomics. 2018;181:83-91. doi: 10.1016/j.jprot.2018.04.002.
96. Su YB, Peng B, Li H, Cheng ZX, Zhang TT, Zhu JX, et al. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc Natl Acad Sci U S A. 2018;115(7):E1578-E1587. doi: 10.1073/pnas.1714645115.
97. Collins JJ, Meylan S, Moskowitz S, inventors; Boston University, General Hospital Corp, assignee. Intermediate metabolism products to potentiate aminoglycoside antibiotics in bacterial infections. United States patent application US 14/914,516. 2016 Jul 14. Available from: https://patentimages.storage.googleapis.com/dd/55/19/fb9ea7c708be86/CA2922361A1.pdf.
98. Hay M, Li YM, Ma Y. Deletion of AcrS Results in Increased Expression of acrE and Confers an Increase in Kanamycin Resistance in Escherichia coli BW25113. J Exp Microbiol Immunol. 2017;3:63-9.
99. Su CC, Li M, Gu R, Takatsuka Y, McDermott G, Nikaido H, Yu EW. Conformation of the AcrB multidrug efflux pump in mutants of the putative
proton relay pathway. J Bacteriol. 2006;188(20):7290-6. doi: 10.1128/JB.00684-06.
100. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334(6058):982-6. doi: 10.1126/science.1211037.
101. Ruiz C, Levy SB. Regulation of acrAB expression by cellular metabolites in Escherichia coli. J Antimicrob Chemother. 2014;69(2):390-9. doi: 10.1093/jac/dkt352.
102. Domenech A, Brochado AR, Sender V, Hentrich K, Henriques-Normark B, Typas A, et al. Proton Motive Force Disruptors Block Bacterial Competence and Horizontal Gene Transfer. Cell Host Microbe. 2020;27(4):544-55.e3. doi: 10.1016/j.chom.2020.02.002.
103. Warner DM, Levy SB. Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility of Escherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon. Microbiology (Reading). 2010;156(Pt 2):570-8. doi: 10.1099/mic.0.033415-0.
104. Griffith JM, Basting PJ, Bischof KM, Wrona EP, Kunka KS, Tancredi AC, et al. Experimental Evolution of Escherichia coli K-12 in the Presence of Proton Motive Force (PMF) Uncoupler Carbonyl Cyanide m-Chlorophenylhydrazone Selects for Mutations Affecting PMF-Driven Drug Efflux Pumps. Appl Environ Microbiol. 2019;85(5):e02792-18. doi: 10.1128/AEM.02792-18.
105. Morehead MS, Scarbrough C. Emergence of Global Antibiotic Resistance. Prim Care. 2018;45(3):467-84. doi: 10.1016/j.pop.2018.05.006.
106. Stokes JM, Lopatkin AJ, Lobritz MA, Collins JJ. Bacterial Metabolism and Antibiotic Efficacy. Cell Metab. 2019;30(2):251-9. doi: 10.1016/j.cmet.2019.06.009.
107. Shabbir MAB, Shabbir MZ, Wu Q, Mahmood S, Sajid A, Maan MK, et al. CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Ann Clin Microbiol Antimicrob. 2019;18(1):21. doi: 10.1186/s12941-019-0317-x.


Submitted date:
11/04/2021

Reviewed date:
12/15/2021

Accepted date:
01/02/2022

Publication date:
01/04/2022

61d48829a9539542b453a752 iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections