Iberoamerican Journal of Medicine
Iberoamerican Journal of Medicine
Original article

Optimal parameters for the enhancement of human osteoblast-like cell proliferation in vitro via shear stress induced by high-frequency mechanical vibration

Parámetros óptimos para la mejora de la proliferación de células similares a osteoblastos humanos in vitro a través del esfuerzo cortante inducido por vibraciones mecánicas de alta frecuencia

Nahum Rosenberg, Orit Rosenberg, Jacob Halevi Politch, Haim Abramovich

Downloads: 0
Views: 349


Introduction: Biomechanical stimulation of cultured human osteoblast-like cells, which is based on controlled mechanical vibration, has been previously indicated, but the exact mechanical parameters that are effective for cells' proliferation enhancement are still elusive due to the lack of direct data recordings from the stimulated cells in culture. Therefore, we developed a low friction tunable system that enables recording of a narrow range of mechanical parameters, above the infrasonic spectrum, that applied uniformly to human osteoblast-like cells in monolayer culture, aiming to identify a range of mechanical parameters that are effective to enhance osteoblast proliferation in vitro.
Methods: Human osteoblast-like cells in explant monolayer culture samples were exposed to mechanical vibration in the 10-70Hz range of frequencies for two minutes, in four 24 hours intervals. Cell numbers in culture, cellular alkaline phosphatase activity (a marker of cell maturation), and lactate dehydrogenase activity in culture media (representing cell death) were measured after the mechanical stimulation protocol application and compared statistically to the control cell cultures kept in static conditions. The cell proliferation was deduced from cell number in culture and cell death measurements.
Results: We found that 50-70 Hz of vibration frequency protocol (10-30 μm of maximal displacement amplitude, 0.03g of peak-to-peak acceleration) is optimal for enhancing cells' proliferation(p<0.05), with a parallel decrease of their maturation (p<0.01).
Discussion: We detected the optimal mechanical parameters of excitation protocol for induction of osteoblast proliferation in vitro by a mechanical platform, which can be used as a standardized method in the research of mechanotransduction in human osteoblast.


Osteoblast; Mechanical stimulation; Vibration; Mechanotransduction


Introducción: La estimulación biomecánica de células similares a osteoblastos humanos cultivadas, que se basa en vibraciones mecánicas controladas se ha demostrado anteriormente, pero los parámetros mecánicos exactos que son efectivos para la mejora de la proliferación de células aún son difíciles de alcanzar debido a la falta de registros de datos directos de las células estimuladas en cultivo. Por lo tanto, desarrollamos un sistema sintonizable de baja fricción que permite el registro de un rango estrecho de parámetros mecánicos, por encima del espectro infrasónico, que se aplica de manera uniforme a células similares a osteoblastos humanos en cultivo monocapa, con el objetivo de identificar un rango de parámetros mecánicos que son efectivos para mejorar la proliferación de osteoblastos in vitro.
Métodos: Se expusieron células similares a osteoblastos humanos en muestras de cultivo de monocapa de explante a vibración mecánica en el rango de frecuencias de 10-70 Hz durante dos minutos, en cuatro intervalos de 24 horas. El número de células en cultivo, la actividad de la fosfatasa alcalina celular (un marcador de maduración celular) y la actividad de la lactato deshidrogenasa en los medios de cultivo (que representa la muerte celular) se midieron después de la aplicación del protocolo de estimulación mecánica y se compararon estadísticamente con los cultivos de células de control mantenidos en condiciones estáticas. La proliferación celular se dedujo del número de células en cultivo y mediciones de muerte celular.
Resultados: Encontramos que 50-70 Hz de protocolo de frecuencia de vibración (10-30 μm de amplitud de desplazamiento máxima, 0,03 g de aceleración de pico a pico) es óptimo para mejorar la proliferación de células (p <0,05), con una disminución paralela de su maduración (p <0.01).
Discusión: Detectamos los parámetros mecánicos óptimos del protocolo de excitación para la inducción de la proliferación de osteoblastos in vitro mediante una plataforma mecánica, que puede utilizarse como método estandarizado en la investigación de la transducción mecánica en osteoblastos humanos.

Palabras clave

Osteoblasto; Estimulación mecánica; Vibración; Transducción mecánica


1. Jung S, Bohner L, Spindler K, Hanisch M, Kleinheinz J, Sielker S. Mechanical stimulation increases the proliferation and differentiation potential of human adipose-derived stromal cells. Int J Stem Cell Res Ther. 2018;5(2): 1-7. doi: 10.23937/2469-570X/1410056.
2. Schaffer JL, Rizen M, L'Italien GJ, Benbrahim A, Megerman J, Gerstenfeld LC, Gray ML. Device for the application of a dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane. J Orthop Res. 1994;12(5):709-19. doi: 10.1002/jor.1100120514.
3. Soejima K, Klein-Nulend J, Semeins CM, Burger EH. Calvarial and long bone cells derived from adult mice respond similarly to pulsating fluid flow with rapid nitric oxide production. Calcif Tissue Int. 1999; 64:S113
4. Rosenberg N. The role of the cytoskeleton in mechanotransduction in human osteoblast-like cells. Hum Exp Toxicol. 2003;22(5):271-4. doi: 10.1191/0960327103ht362oa.
5. Toma CD, Ashkar S, Gray ML, Schaffer JL, Gerstenfeld LC. Signal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts. J Bone Miner Res. 1997;12(10):1626-36. doi: 10.1359/jbmr.1997.12.10.1626.
6. Steward AJ, Cole JH, Ligler FS, Loboa EG. Mechanical and Vascular Cues Synergistically Enhance Osteogenesis in Human Mesenchymal Stem Cells. Tissue Eng Part A. 2016;22(15-16):997-1005. doi: 10.1089/ten.TEA.2015.0533.
7. Rosenberg N, Levy M, Francis M. Experimental model for stimulation of cultured human osteoblast-like cells by high frequency vibration. Cytotechnology. 2002;39(3):125-30. doi: 10.1023/A:1023925230651.
8. Wang L, Hsu H, Xian J. Vibration analysis of a single osteoblast in vitro using the finite element method. Int Conf Biomed Biol Eng. 2016;380-5. doi: 10.2991/bbe-16.2016.58.
9. Nigg BM. Acceleration. In: Nigg NM, Herzog W, editors. Biomechanics of the musculo-skeletal system. 2nd ed. Chichester:John Wiley & Sons; 1998: 300-1.
10. Rubin C, Li C, Sun Y, Fritton C, McLeod K. Non-invasive stimulation of trabecular bone formation via low magnitude, high frequency strain. 41st Orthop Res Soc. 1995;20:548.
11. Rosenberg N, Soudry M, Rosenberg O, Blumenfeld I, Blumenfeld Z. The role of activin A in the human osteoblast cell cycle: a preliminary experimental in vitro study. Exp Clin Endocrinol Diabetes. 2010;118(10):708-12. doi: 10.1055/s-0030-1249007.
12. Gundle R, Stewart K, Screen J, Beresford JN. Isolation and culture of human bone-derived cells. In: Beresford N, Owen ME, editors. Marrow stromal cell culture. Cambridge, UK: Cambridge University Press; 1998:43-66.
13. Yamanouchi K, Satomura K, Gotoh Y, Kitaoka E, Tobiume S, Kume K, et al. Bone formation by transplanted human osteoblasts cultured within collagen sponge with dexamethasone in vitro. J Bone Miner Res. 2001;16(5):857-67. doi: 10.1359/jbmr.2001.16.5.857.
14. Megat Abdul Wahab R, Mohamed Rozali NA, Senafi S, Zainol Abidin IZ, Zainal Ariffin Z, Zainal Ariffin SH. Impact of isolation method on doubling time and the quality of chondrocyte and osteoblast differentiated from murine dental pulp stem cells. PeerJ. 2017;5:e3180. doi: 10.7717/peerj.3180.
15. Gay RJ, McComb RB, Bowers GN Jr. Optimum reaction conditions for human lactate dehydrogenase isoenzymes as they affect total lactate dehydrogenase activity. Clin Chem. 1968;14(8):740-53.
16. Rosenberg N, Hamoud K, Rosenberg O. Quantitative expression of cell death by LDH activity. IOSR J Pharm Biol Sci. 2016;11:46-8.
17. Rutkovskiy A, Stensløkken KO, Vaage IJ. Osteoblast Differentiation at a Glance. Med Sci Monit Basic Res. 2016;22:95-106. doi: 10.12659/msmbr.901142.
18. Bessey OA, Lowry OH, Brock MJ. A method for the rapid determination of alkaline phosphates with five cubic millimeters of serum. J Biol Chem. 1946;164:321-9.
19. Gao H, Zhai M, Wang P, Zhang X, Cai J, Chen X, et al. Low-level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling-associated mechanism. Mol Med Rep. 2017;16(1):317-24. doi: 10.3892/mmr.2017.6608.
20. Yost MG, Liburdy RP. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett. 1992;296(2):117-22. doi: 10.1016/0014-5793(92)80361-j.
21. Liburdy RP. Calcium signaling in lymphocytes and ELF fields: evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett. 2000;478(3):304. doi: 10.1016/s0014-5793(00)01541-6.
22. Sundelacruz S, Moody AT, Levin M, Kaplan DL. Membrane Potential Depolarization Alters Calcium Flux and Phosphate Signaling During Osteogenic Differentiation of Human Mesenchymal Stem Cells. Bioelectricity. 2019;1(1):56-66. doi: 10.1089/bioe.2018.0005.
23. Khilan AA, Al-Maslamani NA, Horn HF. Cell stretchers and the LINC complex in mechanotransduction. Arch Biochem Biophys. 2021;702:108829. doi: 10.1016/j.abb.2021.108829.

Submitted date:

Reviewed date:

Accepted date:

Publication date:

609953fca953957c5662c294 iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections