Iberoamerican Journal of Medicine
https://iberoamjmed.com/article/doi/10.5281/zenodo.4038819
Iberoamerican Journal of Medicine
Review

Clinical Characteristics and Laboratory Findings in Coronavirus Disease 2019 (COVID-2019) Infected Cancer Patients and Chemotherapeutic Medicines against COVID-19

Nikolaos Chrysanthakopoulos

Downloads: 0
Views: 871

Abstract

In December 2019 in Wuhan, China, the World Health Organization (WHO) declares that a severe pandemic of Coronavirus disease 2019 (COVID-19) was emerged and was spread rapidly resulted in dramatic global economic and health implications. The novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for a severe inflammatory reaction and clinically severe complications, although the majority of the infected individuals had mild symptoms and favorable prognosis after recovery. However, cancer patients are a high-risk group as are already susceptible to COVID-19 infection due to their underlying disease and their immunosuppression. Moreover, cancer patients are at increased risk of developing clinically severe complications in case of COVID-19 infection such as, Intensive Care Unit admission, required mechanical ventilation or even death. Another aggravating factor for oncological patients, during that pandemic crisis is the risk of postponing cancer treatment. The present review presents the clinical characteristics accompanied by the corresponding laboratory findings in COVID-19 infected cancer patients and the possible therapeutic role of some known chemo-therapeutic agents based on the recent observations of the International literature.

Keywords

Infection; Coronavirus; COVID-19; Cancer; Patients

References

1. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol. 2020;92(4):401-2. doi: 10.1002/jmv.25678.
2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. doi: 10.1056/NEJMoa2001017.
3. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. doi: 10.1016/S0140-6736(20)30251-8.
4. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130-7. doi: 10.1111/resp.13196.
5. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7.
6. Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: An overview. J Chin Med Assoc. 2020;83(3):217-20. doi: 10.1097/JCMA.0000000000000270.
7. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. doi: 10.1001/jama.2020.1585.
8. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335-7. doi: 10.1016/S1470-2045(20)30096-6.
9. Kamboj M, Sepkowitz KA. Nosocomial infections in patients with cancer. Lancet Oncol. 2009;10(6):589-97. doi: 10.1016/S1470-2045(09)70069-5.
10. Ferguson NM, Laydon D, Nedjati-Gilan G, Imai N, Ainslie K, Baguelin M, et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College London. 2020, doi: 10.25561/77482.
11. Li JY, Duan XF, Wang LP, Xu YJ, Huang L, Zhang TF, et al. Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer. J Immunol Res. 2014;2014:286170. doi: 10.1155/2014/286170.
12. Longbottom ER, Torrance HD, Owen HC, Fragkou PC, Hinds CJ, Pearse RM, et al. Features of Postoperative Immune Suppression Are Reversible With Interferon Gamma and Independent of Interleukin-6 Pathways. Ann Surg. 2016;264(2):370-7. doi: 10.1097/SLA.0000000000001484.
13. Sica A, Massarotti M. Myeloid suppressor cells in cancer and autoimmunity. J Autoimmun. 2017;85:117-125. doi: 10.1016/j.jaut.2017.07.010.
14. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032.
15. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 2002;532(1-2):107-10. doi: 10.1016/s0014-5793(02)03640-2.
16. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-9. doi: 10.1038/s41564-020-0688-y.
17. Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell. 2020;182(2):429-46.e14. doi: 10.1016/j.cell.2020.05.042.
18. Weinheimer VK, Becher A, Tonnies M, Holland G, Knepper J, Bauer TT, et al. Influenza A viruses target type II pneumocytes in the human lung. J Infect Dis. 2012;206(11):1685-94. doi: 10.1093/infdis/jis455.
19. Jia X, Yin C, Lu S, Chen Y, Liu Q, Bai J, et al. Two Things about COVID-19 Might Need Attention. Preprints. 2020;2020020315 doi: 10.20944/preprints202002.0315.v1.
20. Peng L, Zagorac S, Stebbing J. Managing patients with cancer in the COVID-19 era. Eur J Cancer. 2020;132:5-7. doi: 10.1016/j.ejca.2020.03.028.
21. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473-4. doi: 10.1126/science.abb8925.
22. Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet. 2020;395(10225):683-4. doi: 10.1016/S0140-6736(20)30361-5.
23. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-5. doi: 10.1016/S0140-6736(20)30317-2.
24. Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R, et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol. 2020;31(7):894-901. doi: 10.1016/j.annonc.2020.03.296.
25. He W, Chen Lei, Chen Li, Yuan G, Fang Y, Chen W, et al. COVID-19 in persons with haematological cancers. Leukemia. 2020;34(6):1637-45. doi: 10.1038/s41375-020-0836-7.
26. Ludwig H, Delforge M, Facon T, Einsele H, Gay F, Moreau P, et al. Prevention and management of adverse events of novel agents in multiple myeloma: a consensus of the European Myeloma Network. Leukemia. 2018;32(7):1542-60. doi: 10.1038/s41375-018-0040-1.
27. Maschmeyer G, De Greef J, Mellinghoff SC, Nosari A, Thiebaut Bertrand A, Bergeron A, et al. Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European Conference on Infections in Leukemia (ECIL). Leukemia. 2019;33(4):844-62. doi: 10.1038/s41375-019-0388-x.
28. Taplitz RA, Kennedy EB, Bow EJ, Crews J, Gleason C, Hawley DK, et al. Antimicrobial Prophylaxis for Adult Patients With Cancer-Related Immunosuppression: ASCO and IDSA Clinical Practice Guideline Update. J Clin Oncol. 2018;36(30):3043-54. doi: 10.1200/JCO.18.00374.
29. Yang K, Sheng Y, Huang C, Jin Y, Nian Xiong N, Jiang K, et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020;21(7):904-13. doi: 10.1016/S1470-2045(20)30310-7.
30. Tian J, Yuan X, Xiao J, Zhong Q, Yang C, Liu B, et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020;21(7):893-903. doi: 10.1016/S1470-2045(20)30309-0.
31. Karkkainen MJ, Petrova TV. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene. 2000;19(49):5598-605. doi: 10.1038/sj.onc.1203855.
32. Cardones AR, Banez LL. VEGF inhibitors in cancer therapy. Curr Pharm Des. 2006;12(3):387-94. doi: 10.2174/138161206775201910.
33. Palmer BF, Clegg DJ. Oxygen sensing and metabolic homeostasis. Mol Cell Endocrinol. 2014;397(1-2):51-8. doi: 10.1016/j.mce.2014.08.001.
34. Teo SK, Colburn WA, Tracewell WG, Kook KA, Stirling DI, Jaworsky MS, et al. Clinical pharmacokinetics of thalidomide. Clin Pharmacokinet. 2004;43(5):311-27. doi: 10.2165/00003088-200443050-00004.
35. Anargyrou K, Dimopoulos MA, Sezer O, Terpos E. Novel anti-myeloma agents and angiogenesis. Leuk Lymphoma. 2008;49(4):677-89. doi: 10.1080/10428190701861686.
36. Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014;2014:357027. doi: 10.1155/2014/357027.
37. Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58(8):4885-93. doi: 10.1128/AAC.03036-14.
38. Bustamante Alvarez JG, González-Cao M, Karachaliou N, Santarpia M, Viteri S, Teixidó C, et al. Advances in immunotherapy for treatment of lung cancer. Cancer Biol Med. 2015;12(3):209-22. doi: 10.7497/j.issn.2095-3941.2015.0032
39. Byrd JC, Harrington B, O'Brien S, Jones JA, Schuh A, Devereux S, et al. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2016;374(4):323-32. doi: 10.1056/NEJMoa1509981.
40. Wu J, Zhang M, Liu D. Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor. J Hematol Oncol. 2016;9:21. doi: 10.1186/s13045-016-0250-9.
41. Papanota AM, Ntanasis-Stathopoulos I, Kastritis E, Dimopoulos MA, Gavriatopoulou M. Evaluating ibrutinib in the treatment of symptomatic Waldenstrom's macroglobulinemia. J Blood Med. 2019;10:291-300. doi: 10.2147/JBM.S183997.
42. Mesa RA, Yasothan U, Kirkpatrick P. Ruxolitinib. Nat Rev Drug Discov. 2012;11(2):103-4. doi: 10.1038/nrd3652.
43. Harrison C, Mesa R, Ross D, Mead A, Keohane C, Gotlib J, et al. Practical management of patients with myelofibrosis receiving ruxolitinib. Expert Rev Hematol. 2013;6(5):511-3. doi: 10.1586/17474086.2013.827413.
44. Korneev KV, Atretkhany KN, Drutskaya MS, Grivennikov SI, Kuprash DV, Nedospasov SA. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine. 2017;89:127-35. doi: 10.1016/j.cyto.2016.01.021.
45. Rossi JF, Négrier S, James ND, Kocak I, Hawkins R, Davis H, et al. A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer. Br J Cancer. 2010;103(8):1154-62. doi: 10.1038/sj.bjc.6605872.
46. Karkera J, Steiner H, Li W, Skradski V, Moser PL, Riethdorf S, et al. The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study. Prostate. 2011;71(13):1455-65. doi: 10.1002/pros.21362.
47. van Rhee F, Fayad L, Voorhees P, Furman R, Lonial S, Borghaei H, et al. Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman's disease. J Clin Oncol. 2010;28(23):3701-3708. doi: 10.1200/JCO.2009.27.2377.
48. Williams SC. First IL-6-blocking drug nears approval for rare blood disorder. Nat Med. 2013;19(10):1193. doi: 10.1038/nm1013-1193.
49. Liu Y, Cox SR, Morita T, Kourembanas S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5' enhancer. Circ Res. 1995;77(3):638-43. doi: 10.1161/01.res.77.3.638.
50. Marti HH, Risau W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci U S A. 1998;95(26):15809-14. doi: 10.1073/pnas.95.26.15809.
51. Kaner RJ, Ladetto JV, Singh R, Fukuda N, Matthay MA, Crystal RG. Lung overexpression of the vascular endothelial growth factor gene induces pulmonary edema. Am J Respir Cell Mol Biol. 2000;22(6):657-64. doi: 10.1165/ajrcmb.22.6.3779.
52. Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, Bhandari V, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 2004;10(10):1095-103. doi: 10.1038/nm1105.
53. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.
54. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. doi: 10.1016/j.tmaid.2020.101623.
55. Zavascki AP, Falci DR. Clinical Characteristics of Covid-19 in China. N Engl J Med. 2020;382(19):1859. doi: 10.1056/NEJMc2005203.
56. Liu Q, Wang RS, Qu GQ, Wang YY, Liu P, Fei G, et al. Gross examination report of a COVID-19 death autopsy. Fa Yi Xue Za Zhi. 2020;36(1):21-3. doi: 10.12116/j.issn.1004-5619.2020.01.005.
57. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J Thorac Oncol. 2020;15(5):700-4. doi: 10.1016/j.jtho.2020.02.010.
58. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. doi: 10.1016/S0140-6736(20)30628-0.
59. Thickett DR, Armstrong L, Christie SJ, Millar AB. Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;164(9):1601-5. doi: 10.1164/ajrccm.164.9.2011071.
60. Watanabe M, Boyer JL, Crystal RG. Genetic delivery of bevacizumab to suppress vascular endothelial growth factor-induced high-permeability pulmonary edema. Hum Gene Ther. 2009;20(6):598-610. doi: 10.1089/hum.2008.169.
61. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8. doi: 10.1016/S0140-6736(20)30937-5.
62. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-8. doi: 10.1056/NEJMoa2015432.
63. Paravar T, Lee DJ. Thalidomide: mechanisms of action. Int Rev Immunol. 2008;27(3):111-35. doi: 10.1080/08830180801911339.
64. Kumar V, Chhibber S. Anti-inflammatory effect of thalidomide alone or in combination with augmentin in Klebsiella pneumoniae B5055 induced acute lung infection in BALB/c mice. Eur J Pharmacol. 2008;592(1-3):146-50. doi: 10.1016/j.ejphar.2008.07.019.
65. Khalil A, Kamar A, Nemer G. Thalidomide-Revisited: Are COVID-19 Patients Going to Be the Latest Victims of Yet Another Theoretical Drug-Repurposing?. Front Immunol. 2020;11:1248. doi: 10.3389/fimmu.2020.01248.
66. Leung KKY, Hon KL, Qian SY, Cheng FWT. Contrasting evidence for corticosteroid treatment for coronavirus-induced cytokine storm. Hong Kong Med J. 2020;26(3):269-71. doi: 10.12809/hkmj208517.
67. Clinical Trials. Study of the Efficiency and Security of NIVOLUMAB Therapy, Used in Immuno-stimulation, in Hospitalized Obese Individuals at Risk to Evolve Towards Severe Forms of COVID-19 Infection. Multicentric, Paralleled, Randomized, Controlled Trial. Available from: https://clinicaltrials.gov/ct2/show/NCT04413838.
68. Sahni S, Valecha G, Sahni A. Role of Anti-PD-1 Antibodies in Advanced Melanoma: The Era of Immunotherapy. Cureus. 2018;10(12):e3700. doi: 10.7759/cureus.3700.


Submitted date:
08/22/2020

Reviewed date:
09/14/2020

Accepted date:
09/18/2020

Publication date:
09/19/2020

5f6642c70e88251b358760fa iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections