Iberoamerican Journal of Medicine
https://iberoamjmed.com/article/doi/10.5281/zenodo.3841108
Iberoamerican Journal of Medicine
Original article

α-amylase and α-glucosidase antidiabetic potential of ten essential oils from Calophyllum inophyllum Linn

Emmanuel Onah Ojah, Dorcas Olufunke Moronkola, Adeniyi-Akee Mukaram Akintunde

Downloads: 4
Views: 1833

Abstract

Introduction: Diabetes mellitus (DM) is a multifactorial metabolic disorder which is of public health concern. Therapeutic intervention using reliable, affordable and non-toxic natural sources is crucial.
Aim of the study: This research was designed to evaluate the α-amylase and α-glucosidase inhibitory activities of ten essential oils from Calophyllum inophyllum Linn. The study is part of our local sourcing for natural promising leads to ameliorating diabetes mellitus globally.
Materials and methods: Essential oils from ten parts of C. inophyllum Linn were extracted by hydro-distillation using all-glass Clevenger-type apparatus. The percentage yields (w/v) were between 0.219 and 0.506 %. A plot of percentage inhibition versus concentration (mg/mL) of essential oils gave the IC50 values for each essential oil using non-linear regression analysis in reference to acarbose a standard anti-diabetic drug.
Results: The following IC50 values (mg/mL) were obtained in the determination of α-amylase inhibition: [(Leaf, 0.043±0.05); (Leaf-stalk, 0.044±0.02); (Flower, 0.045±0.05); (Seed, 0.042±0.03); (Pod, 0.040±0.05); (Peel, 0.047±0.09); (Stem wood, 0.047±0.02); (Stem bark, 0.049±0.05); (Root wood, 0.048±0.05) and (Root bark, 0.046±0.04)] compared to acarbose (0.034±0.02). While α-glucosidase assay gave the following IC50 values (mg/mL): [(Leaf, 0.044±0.02); (Leaf-stalk, 0.043±0.03); (Flower, 0.044±0.04); (Seed, 0.048±0.02); (Pod, 0.038±0.04); (Peel, 0.048±0.03); (Stem wood, 0.048±0.04); (Stem bark, 0.048±0.02); (Root wood, 0.047±0.04) and (Root bark, 0.045±0.04)] with reference to acarbose (0.032±0.04). The high α-amylase and α-glucosidase inhibitory activity of pod essential oil in comparison with the reference drug must be due to the presence of some impact bioactive phyto-contituents in it.
Conclusion: C. inophyllum Linn has been considered a fundamental source of potent anti-diabetic drugs which could be useful in the management of postprandial hyperglycemia.

Keywords

Diabetes mellitus; Hyperglycemia; Medicinal plants; Calophyllum inophyllum; α-amylase inhibition; α-glucosidase inhibition

References

1. Maedeh M, Hamzeh I, Hossein D, Majid A, Reza RK. Bioactivity of Essential Oil from Satureja hortensis (Laminaceae) against Three Stored-Product Insect Species. African J. Biotech. 2011;10(34):6620-7. doi: 10.5897/AJB11.469.
2. Buchbauer G. The Detailed Analysis of Essential Oils Leads to the Understanding of Their Properties. Perfum Flavor. 2000;25:64-7. doi: 10.3923/rjphyto.2011.66.69.
3. Ayat A, Mohamad EA, Mohamad JK, Foroogh N. In vitro α-amylase and α-glucosidases inhibitory effects of some plant extracts. Int J. Pharmacogn Phytochem Res. 2015;7(2):315-8. doi: 10.4103/0973-1296.166018.
4. Laoufi H, Benariba N, Adjdir S, Djaziri R. In vitro α-amylase and α-glucosidase inhibitory activity of Ononis angustissima extracts. J. App. Pharm. Sci. 2007;7(2):191-8. doi: 10.7324/JAPS.2017.70227.
5. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4-14. doi: 10.1016/j.diabres.2009.10.007.
6. Dahiru T, Alhaji A, Aliyu A, Shehu A. A review of Population based Studies on Diabetes Mellitus in Nigeria. Sub-saharan Afr J Med. 2016;3(2):59-61.
7. Xiao JB, Hogger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem. 2015;22(1):23-38. doi: 10.2174/0929867321666140706130807.
8. Li YQ, Zhou FC, Gao F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of alpha-glucosidase. J Agric Food Chem. 2009;57(24):11463-8. doi: 10.1021/jf903083h.
9. Proença C, Freitas M, Ribeiro D, Oliveira EFT, Sousac JLC, Tomé SM et al. α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. J Enzyme Inhib Med Chem. 2017;32(1):1216-28. doi: 10.1080/14756366.2017.1368503.
10. Zeng L, Zhang G, Liao Y, Gong D. Inhibitory mechanism of morin on α-glucosidase and its anti-glycation properties. Food Funct 2016;7: 3953-63. doi: 10.1039/c6fo00680a.
11. Janeček Š, Svensson B, MacGregor EA. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci. 2014;71(7):1149-70. doi: 10.1007/s00018-013-1388-z.
12. Sales PM, Souza PM, Simeoni LA. Α-amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci. 2012;15(1):141-83. doi: 10.18433/j35s3k.
13. Brayer GD, Sidhu G, Maurus R, Rydberg EH, Braun C, Wang Y, et al. Subsite mapping of the human pancreatic α-amylase active site through structural, kinetic, and mutagenesis techniques. Biochemistry. 2000;39(16):4778-91. doi: 10.1021/bi9921182.
14. Patel H, Royall PG, Gaisford S, Williams GR, Edwards CH, Warren FJ, et al. Structural and enzyme kinetic studies of retrograded starch: inhibition of α-amylase and consequences for intestinal digestion of starch. Carbohydr Polym. 2017;164:154-61. doi: 10.1016/j.carbpol.2017.01.040.
15. International Diabetes Federation. IDF Diabetes Atlas. 8th ed. 2017.
16. American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes. Diabetes Care. 2018;41(Suppl 1):S13-S27. doi: 10.2337/dc18-S002.
17. Butterworth PJ, Warren FJ, Ellis PR. Human α-amylase and starch digestion: an interesting marriage. Starch-Stärke. 2011;63:395-405. doi: https://doi.org/10.1002/star.201000150.
18. Etxeberria U, de la Garza AL, Campion J, Martínez JA, Milagro FI. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Targets. 2012;16(3):269-97 doi: 10.1517/14728222.2012.664134.
19. Kahn SE, Cooper ME, Del-Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068-83. doi: 10.1016/S0140-6736(13)62154-6.
20. Mohammadhosseini M, Akbarzadeh A, Hashemi-Moghaddam H, Mohammadi Nafchi A, Mashayekhi HA, Aryanpour A. Chemical composition of the essential oils from the aerial parts of Artemisia sieberi by using conventional hydrodistillation and microwave assisted hydrodistillation: A comparative study. J Essent. Oil-Bear Plants 2016;19(1):32-45. doi: https://doi.org/10.1080/0972060X.2015.1119067.
21. Mohammadhosseini M, Sarker SD, Akbarzadeh A. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 2017;199;257-315 doi: 10.1016/j.jep.2017.02.010.
22. Aidi-Wannes W, Mhamdi B, Saidani-Tounsi M, Marzouk B. Lipid and volatile composition of borage (Borago officinalis L.) leaf. Trends Phytochem Res. 2017;1(3):143-8.
23. Camilo CJ, Alves Nonato CDF, Galvão-Rodrigues FF, Costa WD, Clemente GG, Sobreira Macedo MAC, et al. Acaricidal activity of essential oils: a review. Trends in Phytochem Res. 2017;1(4):183-98.
24. Ganesan K, Xu B. Ethnobotanical studies on folkloric medicinal plants in Nainamalai, Namakkal District, Tamil Nadu, India. Trends Phytochem Res. 2017;1(3):153-68.
25. Shimabukuro M. Higa N, Chinen I, Yamakawa K, Takasu N. Effects of a single administration of acarbose on postprandial glucose excursion and endothelial dysfunction in type 2 diabetic patients: a randomized crossover study. J Clin Endocrinol Metab. 2006;91(3):837-42. doi: 10.1210/jc.2005-1566.
26. Dweck AC, Meadowst T. Tamanu (Calophyllum inophyllum) – The African, Asian, Polynesian and Pacific Panacea. Int J Cosmetic Sci. 2002;24(6):341-8. doi: 10.1046/j.1467-2494.2002.00160.x.
27. Al-Jeboury FS, Locksley HD. Xanthones in the heartwood of Calophyllum inophyllum; A geographical survey. Phytochemistry. 1971;10(3):603-6. doi: https://doi.org/10.1016/S0031-9422(00)94704-6.
28. Dharmaratne HRW Napagoda MT, Tennakoon SBP. Xanthones from root of Calophyllum thwaitesii and their bioactivity. Nat Prod Res. 2009;23(6):539-45. doi: 10.1080/14786410600899118.
29. Burkhil HM. The useful plants of west tropical Africa. Families E-I. 2nd ed. XX Royal Botanic Gardens Kew. 1994;2:522.
30. Uma SM., Murthy PN, Sahoo KS, Sahu KC. Formulation and evaluation of herbal tablet containing methanolic extract of Calophyllum inophyllum. Int J Pharm. 2012;2(1):181-6.
31. Silpa S, Fathima A, Shakeel I. Phytochemical screening and evaluation of anti-hyperglycemic and anti-hyperlipidimic activity of methanolic extracts of Calophyllum inophyllum on Albino Wistar Rats Int J Adv Res. 2014;2(8):743-52.
32. Varsha G, Uma MB, Ramasamy M, Karunanithi M. Effect of Ethanolic Extract of Calophyllum inophyllum Leaves on Oxidative stress Complications in Mouse Model. Asian J Pharm Clin Res. 2016;9(3):250-2.
33. Um YL Jo YW. Inhibitory effects of Calophyllum inophyllum extract on atopic dermatitis induced by DNCB in mouse. Am J Phytomed Clin Therap. 2016;4(6):165-73.
34. Kijjoa A, Gonzalez TG, Pinto MM, Silva AM, Anantachoke C, Herz W. Xanthones from Calophyllum teysimannii var. inophylloide. Phytochemistry. 2000;55(7):833-6. doi: 10.1016/s0031-9422(00)00289-2.
35. Ee GC, Jong VYM, Sukari MA, Rahmani M, Kua ASM. Xanthones from Calophyllum inophyllum. Pertanika J Sci Technol. 2009;17(2):307-12.
36. Govindachari TR, Vishwanathan N, Pai BR, Ramadas Rao U, Srinivasan M. Triterpenes of Calophyllum inophyllum linn. Tetrahedron. 1967;23(4):1901-10. doi: https://doi.org/10.1016/S0040-4020(01)82592-8.
37. Hang NTM, Chien NQ, Van Hung N. Triterpenes from the leaves of the Vietnamese plant Calophyllum inophyllum L. Tap chi hoa hoc. 2006;44(1):115-8.
38. Patil AD, Freyer AJ, Eggleston DS, Haltiwanger RC, Bean MF, Taylor PB, et al. The inophyllum’s novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, C. inophyllum Linn. J Med Chem 1993;36(26):4131-8. doi: 10.1021/jm00078a001.
39. Janki P, Atul S, Khanna AK, Bhatia G, Awasthi SK, Narender T. Antidyslipidemic and antioxidant activity of the constituents isolated from the leaves of Calophyllum inophyllum. Phytomedicine. 2012;19(14):1245-9. doi: 10.1016/j.phymed.2012.09.001.
40. Arora RB, Mathur CN, Seth SD. Calophyllolide, a complex coumarin anticoagulant from C. inophyllum Linn. J Pharm Pharmacol 1962;14:534-5. doi: 10.1111/j.2042-7158.1962.tb11133.x.
41. Itoigawa M, Ito C, Tan HT, Kuchide M, Tokuda H, Nishino H, et al. Cancer chemo-preventive agents, 4-phenylcoumarins from Calophyllum. inophyllum. Cancer Lett. 2001;169(1):15-9. doi: 10.1016/s0304-3835(01)00521-3.
42. Ojah EO, Moronkola DO, Pettrelli R, Nzekoue FK, Cappellacci L, Giordani C, et al. Chemical Composition of ten Essential Oils from Calophyllum Inophyllum Linn And their Toxicity against Artemia Salina Eur J Pharm Med Res. 2019;6(12):185-94.
43. Kneen E, Sandsted RM, Hollenbeck CM. Amylase and diastatic activity. Cereal Chem. 1943;20(4):399.
44. McCue PP, Shetty K. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase. Asia Pac J Clin Nutr. 2004;13(1):101-6.
45. Kim YM, Jeong MH, Wang WY, Lee HI, Rhee HI. Inhibitory effect of pine extract on alpha- glucosidase activity and postprandial hyperglycemia. Nutrition. 2005;21(6):756-61. doi: 10.1016/j.nut.2004.10.014.
46. Sulistiyani, Safithri M, Sari YP. Inhibition of α-glucosidase activity by ethanolic extract of Melia azedarach L. leaves. IOP Conf Ser: Earth Environ Sci. 2016;31:12-25. doi: 10.1088/1755-1315/31/1/012025.
47. Ojah EO, Moronkola DO. In-vitro alpha-amylase and glucosidase inhibitory potential of leaf hexane, ethyl acetate and methanol fractions from Pterocarpus soyauxii Taub Trends Phytochem Res. 2020; 4(1):37-44.
48. Chelladurai GRM, Cinnachamy C. Alpha amylase and Alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis. Braz J Pharm Sci. 2018;54(1):1-10. doi: https://doi.org/10.1590/s2175-97902018000117151.
49. Kazeem MI, Dansu TV, Adeola SA. Inhibitory Effect of Azadirachta indica A. Juss Leaf Extract on the Activities of α-amylase and α-glucosidase. Pak J Biol Sci. 2013;16(21):1358-62. doi: 10.3923/pjbs.2013.1358.1362.
50. Mohamed EA, Siddiqui MJ, Ang LF, Sadikun A, Chan SH, Tan SC, et al. Potent α-glucosidase and α-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Conplement Altern Med. 2012;12:176 doi: 10.1186/1472-6882-12-176.


Submitted date:
05/05/2020

Reviewed date:
05/25/2020

Accepted date:
05/29/2020

Publication date:
05/30/2020

5ed2ae930e88257e36e6aafa iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections